ENSAYO METODOLOGICO PARA VALORAR LA EROSION EOLICA

QUIRANTES, J.
C.S.I.C. Estación Experimental del Zaidín. 18008 GRANADA

RESUMEN
Para valorar la erosión eólica producida en los suelos se siguen procedimientos diferentes en su enfoque, pero coincidentes en su objetivo: la cuantificación de dicha erosión.
Consideramos tres tipos de valoraciones: directa, paramétrica y experimental. Aquí desarrollamos ésta última, centrándonos su metodología en la medición y análisis de ciertas características físicas y químicas de las formaciones superficiales (s.l.); su cuantificación complementará las estimaciones obtenidas con cartografías temáticas, a la vez que las explicarán.
Se propone un estudio sistemático de las diferentes variables que inciden en el proceso erosivo: litología, pendiente, vegetación, clima, etc.

Palabras clave: erosión eólica, metodología, valoración

ABSTRACT
In order to evaluate soil-produced aeolian erosion different approaches exist, all which pursue the same goal: the quantification of such erosion.
Three types of approaches are considered: direct, parametric and experimental. The latter is here developed, centering its methodology on the measuring and analysis of certain physical and chemical features of surface formations (s.l.); the quantification will be a complement of, as well as explain, other estimations obtained with tematic cartographies.
We propose a systematic study of the various variables which intervene in the erosive process: lithology, slope, vegetation, climate, etc.

Key words: aeolian erosion, methodology, evaluation.

1. VALORACION DE LA EROSION EOLICA
De forma similar a lo que ha ocurrido con la erosión hídrica, se ha intentado con la eólica: cuantificar el proceso erosivo, estudiar las variables y factores que en él intervienen y, por último, obtener una expresión matemática que pueda valorar dicha erosión.

Las investigaciones de CHEPIL (1945), KAWAMURA (1951), SHEN (1960), WILLIAMS (1964), fueron seguidas por los trabajos de WOODRUFF y SIDDOWAY (1965) que elaboraron la que podríamos denominar “Ecuación Universal de pérdida de suelo para la Erosión Eólica”.

\[E = f (I', K', C', L', V') \]
\[E = \text{Erosión potencial (Tm/acre/año)} \]

1' = erodibilidad del suelo (Indice)
K' = Factor de aspereza del suelo del borde
C' = Factor climático local
L' = Longitud media del campo
V' = Cubierta vegetal equivalente (libras/acre)

La validez de esta ecuación viene dada por la que a su vez presentan las variables que la componen. Pero de ellas las que más inciden son: el factor climático (C') y la erodibilidad del suelo (I'). Precisamente esta última es la que hemos analizado hasta el momento y a la que prestamos nuestra atención en los apartados que siguen.

En un reciente trabajo (“Erosión Eólica. Valoración Experimental”, QUIRANTES 1987), presentábamos un avance parcial de la metodología seguida para estimar el

Cuaternario y Geomorfología, vol. 2 (1-4), 85-90, 1988
El aspecto cualitativo presenta como base de investigación las observaciones de campo; observaciones que no siempre parten de una objetividad total de los fenómenos analizados, pues están condicionadas por una serie de variables circunstanciales y no siempre rigurosas. Examinamos lo que denominamos valoración y que a posteriori nos marcará pautas para el análisis de los paisajes erosivos.

La valoración directa se centra, no sólo en los estudios de campo, sino también en el análisis de ciertos factores, índices y variables que puedan detectarse de una forma inmediata sobre el terreno, sin necesitar experimentaciones o mediciones especiales.

La valoración paramétrica es consecuencia inmediata de la valoración directa antes reseñada; su metodología está fundamentada en los estudios de campo y obtenida a partir de ciertas variables, factores e índices tomados en él. Son datos unas veces deducidos y otras consecuencia de resultados experimentales.

Las determinaciones paramétricas, en general, se basan en el empleo de índices y fórmulas que explican el fenómeno degenerativo de los suelos como consecuencia del viento.

El tercer tipo de valoración que hemos utilizado es el experimental. Su desarrollo metodológico se centra en la medición y el análisis de determinadas características de los suelos; características físicas y químicas que el laboratorio puede suministrarnos. Su cuantificación complementará las valoraciones descritas antes y permitirá obtener unas estimaciones muy próximas a la realidad.

Dentro de las valoraciones experimentales también debe incluirse el empleo de simuladores y túneles de viento. El uso de ellos actualmente lo tenemos en estado de comprobación, pues tanto su diseño, como su construcción están terminados. Las primeras pruebas de campo han sido esperanzadoras y sólo nos queda perfeccionar los métodos a emplear para la recogida de muestras.

2. ENSAYO METODOLOGICO DE VALORACION

En los trabajos realizados en el SE español, hemseguido parcialmente los criterios enunciados en el capítulo anterior. Aunque los tres tipos de valoración han sido utilizados, alguno de ellos como el experimental, es el que nos ha servido como base para las primeras estimaciones cuantitativas. (OBRANTES, 1987).

Para una mayor y mejor sistematización de la metodología empleada, la resumimos en los tres apartados que a continuación desarrollamos:

2.1. Cartografía

La cartografía es el primer instrumento básico para el desarrollo de cualquier programa de investigación regional. En conjunto se trata de sacar provecho de las distintas aportaciones que pueden suministrar las cartografías temáticas; cartografías que explicarán siempre alguna variable o circunstancia que incida directa o indirectamente en el fenómeno erosivo. En el caso de la erosión eólica las variables son múltiples; pues van desde las inherentes al propio suelo a las circunstancias climáticas ambientales, sin olvidar la ocupación del propio territorio por la vegetación natural o los cultivos.

2.1.1. Cartografías auxiliares

Se incluyen en este tipo dos apartados: cartografías de pendientes y de vegetación. Ambas, a su vez, subdivididas en otras dos; la de pendientes: dirección de pendientes y de pendientes como tal; la de vegetación: en densidad de vegetación e índices de protección vegetal.

Mapa de pendientes

La pendiente como factor erosivo es fundamental; su conocimiento permitirá una precisión mayor en el estudio de otros tipos de cartografías, como pueden ser las geomorfológicas y las de índices de protección vegetal.

A partir de las topografías básicas (1:50.000, 1:100.000, etc.) puede diseñarse un mapa de pendientes, rápido y preciso. Como intervalos hemos utilizado, en la cartografía 1:200.000, los siguientes: pendientes menores del 7% (llano); de 7 a 10% (suave); de 10 a 17% (inclinado); de 17 a 25% (montañoso) y mayor de 25% (escarpado). La razón de estos intervalos viene dada por la distancia entre curvas de nivel: mayor de 7 mm.; entre 5 y 3; entre 3 y 2; y, por último, menor de 2 mm.

El mapa de dirección de pendientes no es tan trascendente como el anterior, pero puede aclarar muchas dudas a la hora de explicar: direcciones de viento, incidencia de los mismos, etc...

Mapa de vegetación

En el apartado de “Índices de protección” veremos la función desempeñada por la vegetación en la protección del suelo. Los trabajos de sistemática vegetal no suelen incluir cartografías de las áreas estudiadas y, aún menos, mapas que definan la ocupación del suelo. Por estas razones en los trabajos de campo, a la hora de la toma de muestras o en el momento de cualquier otra actividad
sobre el terreno, es conveniente anotar la densidad de vegetación que observemos. No es necesaria una precisión total, nos bastará con estimaciones aproximadas o al menos cercanas al conjunto del área.

Los intervalos aquí adoptados son sólo seis; recubrimiento menor del 10%, el 10 al 20%, del 20 al 40%, del 40 al 60%, del 60 al 80% y cuando es superior al 80%, que es poco frecuente.

La cartografía de “Índices de Protección Vegetal” trata de aplicar la función desempeñada por la vegetación como protectora del suelo.

La valoración de esta protección se expresa con los Índices de Protección que marcan unos parámetros de cubierta vegetal. Parámetros que representan la acción de los diferentes estratos vegetales y de su influencia frente a la erosión. En los mapas elaborados para el “Luedeme” se han seguido de cerca los Índices propuestos en 1968 por la Sección de Hidráulica torrencial del I.F.I.E.

Los Índices del I.F.I.E. consideran dos conceptos básicos: pendiente de iniciación de la erosión y pendiente de arrastre total; además de relacionarlos con la erodibilidad del suelo y las pendientes.

2.1.2. Cartografías de materiales

La cartografía básica de este apartado es la litológica. Se suele tomar como escala la misma que se utilizó en las cartografías auxiliares; aunque en áreas concretas de difícil interpretación puedan hacerse mapas con mayor detalle.

A partir del mapa litológico tendremos una lectura directa de las formaciones petroglópticas superficiales y nos servirá, con posterioridad, para interpretar no sólo los resultados analíticos de las muestras, sino también para la elaboración de otras cartografías temáticas como: "Incidenza del viento en diversas litologías", "Materiales Carbonatados", "Materiales Metamórficos", etc.

Los materiales que integran los cuaternarios y las características topográficas de los mismos, presentan unos condicionamientos netamente diferentes de los del resto de las formaciones superficiales. Por esta razón, entre otras, es conveniente la elaboración de una cartografía que plasme y explique las formaciones cuaternarias existentes en el área de estudio.

La presencia de carbonatos en el suelo incide directamente en la estructura granular de los mismos, pero las posibles variaciones de ésta estructura determinan alteraciones en la susceptibilidad de los suelos a ser erosionados por el viento. Es pues interesante conocer las zonas con presencia de materiales carbonatados y por ende de los suelos que sobre ellas se desarrollan.

2.1.3. Cartografías básicas

En primer lugar, podríamos considerar dos tipos principales: una referente a las modalidades erosivas del área que se investiga y otra en la que se plasmen los datos de viento disponibles. Basándonos en éstas dos cartografías se pueden desarrollar otras dos: una de áreas de deflateración y otra que explique o al menos oriente sobre la incidencia del viento sobre las litologías existentes.

Modalidades erosivas

Para nuestro caso concreto hemos tomado como base el Mapa Geotécnico Nacional (1:200.000) del I.G.M.E. Haciendo una síntesis del mismo, hemos plasmado una cartografía con los fenómenos geológicos descritos y que presentan una mayor incidencia en la erosión eólica. Se describen los rasgos geomorfológicos principales, haciendo un especial énfasis en aquellos que repercuten en las situaciones de inestabilidad de los suelos.

Vientos

La agresividad climática, referida al viento, constituye por sí sola un capítulo fundamental que nos permitirá conocer con mayor aproximación la erosión eólica.

Es difícil obtener datos de viento, precisamente por la falta de estaciones meteorológicas que puedan suministrarlos. Casi siempre hemos de recurrir a las informaciones suministradas por los aeropuertos, en el caso de que existan en la zona.

Las otras observaciones y datos que se puedan reunir son en general de tipo cualitativo y no se corresponden con planes sistemáticos y continuados de mediciones.

Areas de deflateración

Es frecuente la acción del viento en llanuras amplias, en valles de pendiente suave y en depresiones inramontañosas. En estas formas paisajísticas la deflación actúa, arrastrando las partículas del suelo y después las deposita en depresiones, surcos o en zonas de cualquier tipo.

En esas zonas amplias, de pendiente suave, pueden funcionar como auténticas cuencas de deflación. Estas cuencas o cubetas de deflación, actúan como tales, cuando el área llana y desprovista de vegetación sufre alternancias de lluvia-sequía y sobre ella incide el viento con cierta intensidad.

Para cartografiar las áreas de deflación es necesario delimitarlas en función de su pendiente. En principio, se excluyen las pendientes superiores al 10% las que son inferiores a esa cifra se subdividen en dos: inferiores al 7% y las comprendidas entre el 7 y el 10%. Esta separación permite la delimitación de pasillos y depresiones de rango menor, dentro de otras más amplias.
En una cartografía de pendientes 1:200.000, se ha tomado la decisión de aceptar como áreas de deflación las superficies mayores de 20 kilómetros cuadrados.

Viento y litologías

Las referencias bibliográficas sobre la incidencia del viento sobre las diversas litológicas, prácticamente no existen. Ante esta tesitura hemos tenido que fijar criterios, no siempre objetivos, que nos delimiten esas influencias.

Se han considerado dos realidades esenciales: por un lado, las asociaciones litológicas, y por otro el distinto estado de conservación o de alteración de las rocas. Las cartografías referidas a materiales (litológicos, materiales carbonatados, etc...) serán la base para diseñar y delimitar esta nueva cartografía.

Un segundo criterio cartográfico serán las observaciones de campo. A partir de ellas podrán irse aceptando criterios de diferenciación, a la vez que se perfilarán las otras cartografías temáticas anteriormente descritas.

2.2. Análisis de muestras

En el capítulo de valoración de la Erosión Eólica adelantábamos la existencia de varios métodos experimentales para medirla. El que ahora describimos es el basado en el estudio analítico de determinadas características físicas y químicas del suelo.

2.2.1. Textura de los suelos

Considerando la textura de los suelos como la expresión de su contenido en áreas, limos y arcillas, el análisis de estos componentes nos puede expresar ciertas características específicas de los suelos. Estas características presentan una respuesta precisa ante los agentes externos que incidan sobre dichos suelos (Zachar, 1982).

En el caso de las arcillas hay una interconexión clara entre el porcentaje de las mismas y la erosión determinada por el viento. Así se ha podido precisar que la erodibilidad de las formaciones superficiales puede expresarse mediante la ecuación propugnada por Chepil (1945; 1955)

\[q = ax^e \]

Siendo \(q \) = erosión en Tm/Ha ; \(x \) = al porcentaje en arcilla ; \(y, a, b, c \) = constantes con valores de 11,8; y 0,09.

Las pérdidas de suelo deducidas mediante esta ecuación, se pueden concretar por la expresión siguiente:

- Pérdidas en mm/año
- % Arcillas
- Menos de 0,1
- De 0,1 a 0,3
- 0,3 a 0,5
- 0,5 a 0,7
- 0,7 a 1
- Mayor de 1

- > 13,25
- 7,13 a 13,25
- 5,50 a 7,13
- 4,55 a 5,50
- 3,50 a 4,55
- < 3,50

Mediante estos grupos de % de arcillas se puede cartografiar la susceptibilidad del suelo a la erosión eólica, considerando sólo este factor. Aunque para una sistematización más general conviene optar por elegir sólo tres intervalos, en lugar de los seis especificados; estos intervalos, representarían pérdidas entre 0 y 0,3 mm; entre 0,3 y 0,7 y mayores de 0,7.

En el caso de los limos, su porcentaje también sirve para expresar la erodibilidad de los suelos. Resumiendo, llegamos a la conclusión de que las pérdidas son:

- Pérdidas en mm/año
- % Limos
- Menos de 0,1
- De 0,1 a 0,3
- 0,3 a 0,5
- 0,5 a 0,7
- 0,7 a 1
- Más de 1,0

- 43,0 a 70,0
- 31,6 a 43,0
- 25,0 a 31,6
- 21,6 a 25,0
- < 21,6

También los intervalos deben reducirse a tres: menor de 0,3 mm; de 0,3 a 0,7 y mayor de 0,7.

Haciendo intervenir el porcentaje de gravas, no podemos concluir con aserciones matemáticas como antes enunciábamos. Las gravas sólo nos servirán como indicadores estimativos de la erodibilidad de los suelos; marcarán una directriz, pero nunca una confirmación.

El resultado final de la textura de los suelos mediante el análisis de arcillas, limos y gravas nos permite concluir con un mapa de erodibilidad. Mapa que no será definitivo, pero que podrá orientarnos mucho a la hora de discernir sobre el estado de un territorio.

2.2.2. Composición química

Incluimos en este apartado las determinaciones analíticas de materia orgánica y carbonatos; los datos de fósforo también se citan, pero su trascendencia ante el fenómeno erosivo aún no está bien delimitada.
Carbonatos

En la cartografía “Materiales Carbonatados” se describen las formaciones de este tipo existentes, pero no son las únicas pues en realidad hay otras áreas con mayor o menor riqueza de los mismos.

Estas se pueden detectar a partir de los datos obtenidos en el análisis de las muestras.

El carbonato vendrá impuesto por la litología del sustrato y, también, por la influencia de los macizos carbonatados más o menos cercanos. La génesis no es trascendente, lo que realmente incide es la proporción de dichos componentes.

Al aumentar en el suelo la presencia de CO$_3$ Ca finamente dividido, disminuye el aterrazamiento y aumenta la erodibilidad.

El análisis de carbonatos se representa gráficamente siguiendo las pautas marcadas para arcillas y limos. Los intervalos elegidos se corresponden con proporciones del 0 al 1%, del 1% al 3%, del 3% al 10%, del 10% al 30%, del 30% al 50%, y mayor del 50%. El límite del 3% viene impuesto porque en ciertos suelos, con él, se da el máximo de erosión, disminuyendo al sobreponerlo; los otros intervalos se han hecho más amplios para evitar la proliferación de la áreas de erodibilidad.

La cartografía resultante de esos seis intervalos elegidos, presenta una distribución superficial bastante concordante con los mapas que antes se habían realizado con las arcillas y con los limos.

Materia orgánica

La formación de agregados en los suelos es favorecida por la existencia de materia orgánica, considerando como tal materia orgánica la que está incorporada al suelo (húmus) y no la producida por la acción directa de los seres vivos.

Una cartografía que marque las áreas con una riqueza determinada en materia orgánica, servirá como indicador de las posibilidades de los suelos a ser erosionados. La erosión cólica queda más favorecida cuanto menor sea la riqueza orgánica de materia orgánica en las áreas delimitadas.

Los intervalos más idóneos para las cartografías propuestas son los siguientes: menores del 0,8%; de 0,8 a 1,5%; de 1,5 a 2,4%; de 2,4 a 4% y superiores al 4%.

Fósforo

La influencia del fósforo en la erodibilidad de los suelos ha sido poco estudiada y se desconocen las relaciones cuantitativas existentes entre la presencia del fósforo y la susceptibilidad de los suelos a ser erosionados, por el viento.

Si se ha podido constatar que los suelos muy erosionados suelen ser pobres en fósforo; así hemos visto en nuestros trabajos de campo que: las áreas muy afectadas por la acción del viento tienen un contenido en fósforo pequeño, y casi siempre, por debajo de 20mg/100g.

3. ERODIBILIDADES PARCIALES

3.1. Arcillas y Limos

En las cartografías correspondientes de cada uno de estos componentes, tomábamos tres agrupaciones principales; aunque previamente en el análisis cartográfico se consideraban seis.

Al solapar las cartografías, la suma de los agrupamientos nos da un total de nueve valores, algunos de ellos coincidentes; por esta razón se reducen sólo a cinco.

Con esta conjunción de cartografías tenemos el primer boceto de la erodibilidad cólica de los suelos y formaciones superficiales. Aparecen áreas específicas y bien delimitadas; pero obtenidas con la suma sólo de dos variables: limos y arcillas; después tendrán que intervenir otros factores determinativos de la erosión.

3.2. Arcillas, limos y gravas

Siguiendo el criterio anterior unimos la cartografía de las gravas con la de arcilla-limos. El número de elementos sería de diez, lo que nos da un fragmentación elevada de las áreas delimitadas. Para evitar la atomización se han suprimido las manchas pequeñas, y las de valores aínes se han agrupado.

El resultado final es un mapa parecido al de arcillas-limos, aunque con una mayor concreción, en lo que se refiere a la erodibilidad de los distintos sectores estudiados.

3.3. Composición química

Al hablar de materia orgánica y carbonatos se han establecido unos criterios, basados en experiencias anteriores, que nos permiten correlacionarlos con el grado de erodibilidad de los suelos. El fósforo también tiene carácter de indicador, pero no hemos encontrado criterios válidos para hacerlo intervenir en el análisis cartográfico.

Aunando las cartografías de carbonatos y materia orgánica se obtiene un total de once agrupamientos de los que uno se repite, por lo cual se toman sólo diez, siendo éste también el número de grados de erodibilidad adoptados.

Los criterios cartográficos son los mismos que se seleccionaron en el análisis de textura, por lo que omitimos su descripción.
4. SINTESIS METODOLOGICA

Basamos todo este ensayo metodológico en dos grandes apartados básicos: cartográfico y analítico. Con el primero se prepara la infraestructura del área de estudio; utilizando el segundo, nos acercamos al conocimiento de la erodibilidad de los suelos. Necesitaríamos conocer otros factores como rugosidad, densidad, humedad, etc; pero la amplitud del área estudiada y la cartografía utilizada (1:400.000) limitan y condicionan los sistemas de observación y análisis empleados.

Al hablar de erosión eólica hay que diferenciar las características estructurales del suelo, de la composición física y química del mismo, aunque ésta última condiciona las primeras. Incluso podríamos hacer más indicativos los resultados obtenidos si el análisis mecánico lo hacemos en seco, en lugar de húmedo; pues la erodibilidad aumenta a medida que lo hace la desecación del suelo.

4.1. Análisis cartográfico y cartografía (erodibilidad)

El cálculo de erodibilidad se ha centrado, pues, en dos cartografías finales: una basada en la lectura de los suelos y otra en la composición química de los mismos.

La conjunción de ambas cartografías nos proporciona un mapa de “grados de erodibilidad” extremadamente detallado, pero que se pueden agrupar con las denominaciones de: inapreciable, baja, mediana, alta y muy alta.

4.2. Erosión eólica (paisajes erosivos)

Definiendo el paisaje como “un espacio de la superficie terrestre con características homogéneas”, el paisaje erosivo también será un espacio de la superficie terrestre, pero analizado en su aspecto erosivo y no en cualquier otro, como podría ser, por ejemplo: agrario, artístico, etc...

Consideramos aquí como paisajes erosivos aquellas zonas que tienen características similares ante los fenómenos de erosión, ya sean hídricas o eólicas.

Para la cartografía de los paisajes erosivos hemos tomado como base esencial el mapa de erodibilidad y, como medio espacial, las cartografías temáticas anteriormente reseñadas. La unión de todos estos elementos determinantes, origina un mapa de gran complejidad en manchas o espacios representados; forzándonos a una reducción drástica de los mismos.

Aceptar como base seis grados de erosión, su equivalencia sería seis tipos de paisajes. Así la representación cartográfica queda perfectamente delimitada y el agrupamiento más homogéneo.

Los seis grados de erosión se clasifican como: de ninguna erosión, ligera, moderada, acusada, alta y muy alta.

BIBLIOGRAFIA

