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Abstract

Rigorous field surveys, environmental specificity, and data paucity hamper detailed soil erosion assessments, 
model selection, ecological monitoring, and prioritization against soil erosion. To address this in a topograph-
ically complex environment, the present study presents a novel selection of physiographic factors integrated 
geospatially with the land use/cover and geology data to prioritize the soil erosion vulnerable areas within 
a watershed, using Tyume River Catchment, Eastern Cape, South Africa as a case study. A quantitative mor-
phometric analysis involving parameters such as the drainage density, topographic wetness index, terrain 
ruggedness index, topographic position index, and vector roughness measure was computed using a digital 
elevation model based on their inference of watershed’s morphogenetic response to anthropic factors and 
pluviometric processes. Based on expert judgment for thematic ranking and weightage, the soil erosion 
prioritization area map was generated through weighted overlay analysis of the morphometric parameters 
with land use land cover and surficial lithology themes. The results depicted a catchment-scale soil erosion 
vulnerability map, classified into very high (40 km2), high (135 km2), medium (209 km2), low (186 km2), and 
non-vulnerable (113 km2) zones. Using Google Earth image analyses through the coefficient of determination 
(R2 = 0.563) and Receiver Operating Characteristics Curve (AUC = 0.899), the model corroboration indicated 
that the soil erosion vulnerability assessment is reliable and highly predictive. The study identified free-range 
animal operation and hillslope overgrazing, especially in riparian zones, as the environmental practices ag-
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1.	 Introducción

Soil erosion is a severe environmental concern 
due to its detrimental effect on ecological pro-
ductivity, soil hydrological processes, and the 
threat to the landscape’s viability for agricul-
ture (He et al., 2024). Currently, soil erosion 
research has become relevant on the local 
and international agendas to address ongoing 
stream siltation, streamflow reduction, wa-
ter resources pollution, and the abatement 
of water infrastructure functionality (Martín-

ez-Murillo et al., 2011; DWS, 2017; Schillaci 
et al., 2023). For example, dam sedimenta-
tion has rendered several large dams in the 
Eastern Cape of South Africa efficient (DWS, 
2017; Basson et al., 2022), leading to a rise 
in water and food insecurity. Soil erosion has 
led to increased land abandonment, endan-
gering ecological services, the conservation 
of natural resources, and the sustainability of 
the environment globally (Sibiya et al., 2023; 
Shtober-Zisu et al., 2024). Globally, one-eighth 
of the world’s population is at risk due to land 

gravate the catchment’s terrain susceptibility to soil erosion. The assessment showed that some of the se-
lected morphometric parameters could be used to improve the validated soil erosion models in mountainous 
regions. Due to the high precision of the engaged approach and the identified environmental concerns, the 
method can be adopted in similar environments.

Key words: Landscape indices, Soil erosion, Vulnerability, Morphometric analysis, South Africa.

Resumen

El exhaustivo trabajo de campo, la especificidad medioambiental y la escasez de datos dificultan las evaluacio-
nes detalladas de la erosión del suelo, la selección de modelos, el seguimiento ecológico y la priorización de 
la lucha contra la erosión del terreno. Para abordar este problema en un entorno topográficamente complejo, 
el presente estudio presenta una nueva selección de factores fisiográficos integrados geoespacialmente con 
los datos de uso / cobertura de la tierra y geología para priorizar las zonas vulnerables a la erosión del suelo 
dentro de una cuenca hidrográfica, aplicado a la cuenca del río Tyume, Sudáfrica como un estudio de caso. Se 
calculó un análisis morfométrico cuantitativo que incluía parámetros como la densidad de drenaje, el índice 
de humedad topográfica, el Índice de rugosidad del terreno, el indicador de la posición topográfica y la me-
dida de rigidez del vector, utilizando un modelo de elevación digital basado en su inferencia de la respuesta 
morfogenética de la capa de agua a los factores antropogénicos y los procesos pluviométricos. Sobre la base 
del juicio de expertos para la clasificación temática y la ponderación, se generó el mapa de prioridad de la 
erosión del suelo a través de un análisis ponderado de la superposición de los parámetros morfométricos 
con la cobertura de las tierras de uso de la tierra y las capas de la litología superficial. El resultado mostró un 
mapa de la vulnerabilidad a la erosión del suelo a escala de cuenca, clasificado en zonas muy altas (40 km2), 
altas (135 km2), medianas (209 km2), bajas (186 km2) y no vulnerables (113 km2). Utilizando los análisis de 
imágenes de Google Earth a través del coeficiente de determinación (R2 = 0,563) y la curva de características 
operacionales del receptor (AUC = 0,899), la corroboración del modelo indicó que la evaluación de la vulne-
rabilidad a la erosión del suelo es fiable y altamente predictiva. El estudio identificó la explotación extensiva 
de animales y el sobrepastoreo de las colinas, particularmente en las zonas ribereñas, ya que las prácticas 
ambientales agravan la susceptibilidad del terreno de la cuenca a la erosión del suelo. La evaluación mostró 
que algunos de los parámetros morfométricos seleccionados podrían utilizarse para mejorar los modelos 
validados de erosión del suelo en las regiones montañosas. Debido a la alta precisión del enfoque empleado 
y las afecciones ambientales identificadas, el método puede adoptarse en entornos similares.

Palabras clave: Índices de paisaje, Erosión del suelo, Vulnerabilidad, Análisis morfométrico, Sudáfrica. 
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degradation, while one-quarter are directly 
affected (Smith et al., 2020). In the last ten 
years, land degradation and soil erosion have 
caused more than 80,000 km2 of farmland to 
lose about 10 to 40 tons/hectare due to land 
degradation and soil erosion in the recent dec-
ade (Hladky et al., 2017) while the rate of soil 
loss was noted to be twice the rate of soil for-
mation annually (Parwada and Van Tol, 2016). 
Consequently, the erosion of the topsoil layer 
will become a severe environmental issue, es-
pecially in regions sensitive to climate change 
(Owolabi and Belle, 2023). 

The vulnerability of soil to erosion in South 
Africa is high due to the effect of climate 
change, slope steepness, soil/geologic type, 
and increased extent of change of land use/
cover (Owolabi et al., 2022). This study un-
dertakes an integrated assessment of land 
degradation by soil erosion driven by water at 
a catchment scale. Many soil erosion models 
have been developed to monitor and evaluate 
the extent and potential impacts of water soil 
erosion, such as Universal Soil Loss Equation 
(USLE) (Wischmeier and Smith, 1978; Hel-
mi, 2023), Water Erosion Prediction Project 
(WEPP) (Flanagan and Nearing, 1995; Ugwu 
et al., 2024), Soil and Water Assessment Tool 
(SWAT) (Arnold et al., 1998; Aloui et al., 2023), 
and European Soil Erosion Model (EUROSEM) 
(Morgan et al., 1998; Busico et al., 2023). The 
proposition of several soil erosion models is 
mainly due to the variation in geohydrological 
processes and watershed response due to the 
varying physiographic factors influencing ter-
rain susceptibility to soil erosion. Hence, the 
USLE was modified to Revised Universal Soil 
Loss Equation (RUSLE) (Renard et al., 1991) 
and subsequently modified to Sediment As-
sessment Tool for Effective Erosion Control 
(SATEEC) for site-specific soil loss estima-
tion (Mhangara et al., 2012). However, most 
models are data-intensive, requiring rigor-
ous field assessment for soil samples, terrain 
in-situ testing, and extensive field coverage, 

which could be unsafe, labor-intensive, costly, 
timeous, and require detailed laboratory as-
sessment. However, the local climatic activi-
ties, geohydrological processes, soil intrinsic 
properties, and land cover change effects are 
depicted on the morphogenetic imprints of 
the watershed, which can be easily mapped 
through quantitative morphometric analysis 
(Bhatt and Ahmed, 2014; Jadidoleslam et al., 
2019; Deribew et al., 2024; Vieira and Oyguc, 
2024). As a result, this study presents an in-
tegrated morphometric-based approach to 
address the gap in model-site specificity.

Increasing awareness of terrain and morpho-
metric characteristics has helped improve 
watershed management (Bhatt and Ahmed, 
2014). Morphometric parameter (MPs) anal-
ysis provides information on the soil surface 
conditions, soil thickness (Deribew et al., 
2024), and fluid/ moisture transfer function 
associated with runoff production (Jadidole-
slam et al., 2019). Terrain information drawn 
from MPs includes drainage density (DD), top-
ographic wetness index (TWI), terrain rugged-
ness index (TRI), topographic position index 
(TPI), and vector roughness measure (VRM). 
TWI models the influence of hillslope factors 
on soil water transport (Zhang et al., 2024), 
and TRI projects the areas of high potential 
for overland flow (high TRI) and depressions 
(low TRI) (Amatulli et al., 2020). TPI calibrates 
the runoff-contributing areas within a wa-
tershed (Avand et al., 2022). VRM computes 
the relative positions of geomorphic incisions 
influenced by gravity, soil surface condition, 
and hydrographic network (Smith, 2014). DD 
depicts the drainage areas with high suscep-
tibility to detachment when combined with 
other soil/ terrain parameters (Jadidoles-
lam et al., 2019). MPs have been unilaterally 
adopted and hybridized with a land use/ land 
cover map using a multi-criteria classifier to 
prioritize areas of soil erosion (Haokip et al., 
2022). The effectiveness of MPs can be im-
proved by integrating its themes with signif-
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icant land use/ cover (LU/C) features and ge-
ology, thereby addressing the research gap on 
the relevant geomorphic-based soil erosion 
models in terrain with complex topography. 
As a result, the study proposed a Soil Erosion 
Potential Area (SEPA) model based on the 
weighted overlay computation of themes of 
five MPs with a land use/ cover map and sur-
ficial lithology themes guided by expert deci-
sions drawn from extensive qualitative litera-
ture review and content analysis to score the 
relative erosional influence of the selected 
themes. The proposition of SEPA is motivated 
by Sharma’s (2010) selection of morphomet-
ric parameters (3), TWI, slope length factor, 
and stream power index, alongside an invert-
ed NDVI, which are integrated using over-
lay analysis after ISODATA clustering. SEPA 
computation is based on the conventional 
approach of the multi-parametric decision 
method expressed as a weighted linear com-
bination in Pal (2016) and Ghosh and Lepcha 
(2019) soil erosion studies. The geospatial-as-
sisted delineations of the environments in-
volving multi-parametric decision-making 
have been widely adopted in other environ-
mental studies such as groundwater exploita-
tion (Hasanuzzaman et al., 2022; Dimple et 
al., 2023), landslide investigation (Arumugam 
et al., 2023), and wildfire studies (Djabri et 
al., 2023), as conceptualized in SEPA compu-
tation here. To this end, the study is outlined 
to address the following research questions; 
(a) Can a soil erosion model mainly based on 
morphometric assessment among others, 
provide a reliable qualitative vulnerability as-
sessment? (b) What are the convent factors 
driving soil erosion in a topographic domain.

The research aims to present an integrated 
framework model of soil erosion assessment 
based on the analysis of geo-morphometric 
parameters, land use/cover, and geological 
factors in the Tyume River Basin. The study is 
addressed using two central objectives, which 
include: (1) the geospatial mapping and inte-

gration of Tyume river basin morphometric 
parameters with land use/cover and geology 
themes, and (2) a critical investigation of the 
ground situation aided by Google Earth for 
thorough visualization and erosion proneness 
estimation for soil erosion model corrobora-
tion using receiver operating curves and con-
fusion matrices to enhance the qualitative 
interpretation of areas vulnerable to soil ero-
sion. By presenting this geomorphic-based in-
tegrated approach, this study contributes to 
the body of knowledge on the suitability of 
MPs in optimizing soil erosion models in areas 
with complex topography.

2. Materials and methods

2.1. Description of the study area

The Tyume River catchment covers an area 
of 642.37 km2 and an altitudinal range of 308 
- 1826 m.a.s.l. (Figure 1). The catchment is 
located at the headwater of Keiskamma wa-
tershed, in Amathole municipality, Eastern 
Cape, South Africa. It has an average winter 
temperature of 11°C which ranges between 
-4°C and 15°C in the winter (Jun-Jul-Aug), 
and an average summer temperature of 20°C 
which ranges between 17°C and 38°C in sum-
mer (Dec-Jan-Feb). The catchment is charac-
terized by a mean annual rainfall of 450 mm 
– 600 mm, with extreme rainfall experienced 
at the higher altitudes where the terrain to-
pography possibly influences the rainfall at 
the north section of the Tyume (Owolabi et 
al., 2021a). The mean monthly discharge of 
Tyume River ranges from 8.11 to 33.41 m3/s 
with the highest in March and the lowest in 
July while the mean annual discharge is es-
timated at 235 m3/s using the last 44 years 
streamflow data. Tyume River is 75 km long 
and runs southward from the Hogsback State 
Forest at the north, through Alice, the center, 
and several rural settlements to the outlet 
where its confluences into the Keiskamma 
River, the tertiary catchment at the south, 
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where Tyume catchment positions as a head-
water (Figure 1). 

The landform in the Tyume basin can be clas-
sified as sub-range hilly terrain at the extreme 
north as a part of the Great Escarpment and 
flanking the west-northwest-north-north-
east-east and the peneplain that depresses 
to the foothill in the south (Dijkshoorn et al., 
2008). The catchment is geologically under-
lain by the dominant Tatarian arenaceous ar-
gillites of Balfour Formation, the subordinate 
Kazanian Light Grey sandstone of Middleton 
Formation at the extreme South, and the 
Scythian argillaceous arenites of Katberg For-
mation, with the Beaufort Group and the Ka-
roo Supergroup (Owolabi et al., 2021b). The 
dominant soil fractions are Calcic Vertisols 
at the north, Calcaric Regosols at the center, 
and coarse deposits in the south (Dijkshoorn 
et al., 2008). The natural vegetation of the 
area is classified into three significant biomes: 
dense forest (north extreme at Hogsback), sa-
vanna (center to the west), and tropical thick-
et (center to the east and south). Visual in-
spection within the terrain and Google Earth 
inspection showed vivid evidence of onsite 
effect of soil erosion, degenerating into a 
badlands while the offsite effects where man-
ifested through periodic siltation of Tyume 
River and sedimentation at the plain by the 
south of the catchment.

2.2. Data sourcing and pre-processing

A digital elevation model (DEM) with a 30 m 
by 30 m resolution, provided by the Shuttle 
Radar Topographic Mission (SRTM) and the 
Landsat 8 Operation Land Imager (OLI) data 
were downloaded from the USGS Earth Ex-
plorer website (https://earthexplorer.usgs.
gov/) and the geology map obtained from 
Council for Geoscience Studies (CGS). The 
winter month OLI (July 2019) was selected 
due to low rainfall intensity, wind speed, and 
cloud cover, enabling a quality raster’s spec-

tral reflectance. The DEM was pre-processed 
to avoid radiometric errors and ensure at-
mospheric correction in PCI Geomatica 2015. 
Data relevant to geology, anthropic factors, 
and pluviometric information such as the 
drainage density (DD), topographic wetness 
index (TWI), topographic position index (TPI), 
and terrain ruggedness index (TRI), vector 
roughness measure (VRM) were clipped or 
computed. 

Each layer was qualitatively classified after 
collating the input data layers by assigning 
the relative weighting values to each unit fac-
tor based on field knowledge (Google Earth 
inspection) and literature. A priority zoning 
based on the relative significance of factors 
influencing soil erosion by water in the study 
terrain was used to develop a rating system to 

Figure 1. Tyume River basin showing the main river 
valley, Tyume tributaries, and elevation.

Figura 1. Cuenca del río Tyume que muestra el valle 
principal del río, los afluentes del Tyume y la elevación.
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ensure a qualitative map combination (Sarkar 
and Kanungo, 2004). The approach engaged 
in this study may be specific to a complex ter-
rain such as found in Hogsback escarpment 
of South Africa. The methodology involved 
factors selection, data clustering in a GIS plat-
form, computation of soil erosion potential 
zones, and corroboration of the vulnerabil-
ity map and the DEM data by ground-truth-
ing. The study was further corroborated us-
ing Google Earth scenery mapping in Google 
Earth Pro software (Farhan and Nawaiseh, 
2015), coefficient of determination, and re-
ceiver operating characteristic curve. The 
conceptual approach that guides the produc-
tion of soil erosion by water vulnerability map 
is presented in Figure 2.

2.3. �Preparation and computation of the 
thematic layers

2.3.1. Drainage density

The DEM was processed for watershed de-
lineation by converting the raw DEM raster 
into fil (a geodatabase file) data. Flow direc-
tion was generated from the fil raster and 
further processed for the drainage accumula-
tion track. The resulting accumulation raster 
was refined for drainage tracks not to be less 
than 100 units per path inflection (DEM ridge-

line). The sink, snap pour point, and stream 
links were computed for stream order com-
putation. Computation of the stream order 
was carried out using the Strahler approach 
(Strahler, 1957). The resulting stream order 
was converted from raster into polylines and 
a drainage density map in ArcMap 10.8.1 
(Owolabi et al., 2020). The resulting featured 
class raster is classified into five according to 
Table 1 (Owolabi et al., 2020). 

Table 1. Classification scheme for Tyume drainage 
density map (Owolabi et al., 2020).

Tabla 1. Esquema de clasificación para el mapa de 
densidad de drenaje de Tyume (Owolabi et al., 2020).

Class name and rate Range of Drainage density
Very low 0 – 150
Low 151 – 240
Moderate 241 – 360
High 361 – 600

2.3.2. Topographic Wetness Index

The topographic wetness index (TWI) was 
generated from the elevation map extracted 
from ASTER DEM in ArcMap 10.8.1. The study 
area DEM raster was processed to create the 
slope map in ArcMap. The output measure-
ment was carried out in degree format at 
the Z factor of 1 (at default) to reduce the 
influence of variogram overestimation. Calcu-
lation of the TWI was carried out in the ras-
ter calculator, using equation 1 (Kirkby and 
Statham, 1975; Hojati and Mokarram, 2016);

	

𝑇𝑇𝑇𝑇𝑇𝑇 𝑇 ln '
𝑎𝑎

𝑡𝑡𝑡𝑡𝑡𝑡(𝛽𝛽).
	1	

(1)	
	

𝑇𝑇𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇𝑇𝑐𝑐 − 𝑍𝑍𝑖𝑖)2)2	1	
(2)	

	

𝑇𝑇𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇0 − Σ𝑛𝑛𝑛𝑛(𝑍𝑍0/𝑛𝑛𝑛	1	
(3)	

	

 
         (1)

Where α, specific catchment area = catch-
ment area, A, per unit contour length, L, (A/L), 
and tan(β) = slope. However, the TWI was 
converted into an integer format to classify 
the zones of TWI within the upper and lower 
quartile to enable the projection of the zones 
of high and low TWI. The resulting projection 
of TWI spots was classified into four accord-
ing to Table 2 (Owolabi et al., 2020).

Figure 2. Classification scheme for the projected 
Topographic Wetness Index (Owolabi et al., 2020).
Figura 2. Esquema de clasificación para el Índice de 

Humedad Topográfica proyectado (Owolabi et al., 2020).
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Table 2. Classification scheme for the projected 
Topographic Wetness Index (Owolabi et al., 2020).
Tabla 2. Esquema de clasificación para el Índice de 
Humedad Topográfica proyectado (Owolabi et al., 

2020).

Class name Range of values of TWI
High TWI 6.3 – -12.7
Steep hillslope -12.8 – -14.4
Gentle zone -14.5 – -16.6
Low TWI -16.7 – -20.5

2.3.3. Terrain ruggedness index

Terrain ruggedness index (TRI) was carried out 
by computing the square of the summation of 
grid cell difference relative to its neighboring 
cell at the scale of 75 m, where a slight eleva-
tion change can be significant. TRI is based on 
the equation of Riley et al. (1999) as present-
ed in equation 2:

	

𝑇𝑇𝑇𝑇𝑇𝑇 𝑇 ln '
𝑎𝑎

𝑡𝑡𝑡𝑡𝑡𝑡(𝛽𝛽).
	1	

(1)	
	

𝑇𝑇𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇𝑇𝑐𝑐 − 𝑍𝑍𝑖𝑖)2)2	1	
(2)	

	

𝑇𝑇𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇0 − Σ𝑛𝑛𝑛𝑛(𝑍𝑍0/𝑛𝑛𝑛	1	
(3)	

	

 
      (2)

Where;

Zc = elevation of a central cell

Zi = �elevation roughness measure n of each 
cell in the neighborhood at the scale of 75 
m i = 1, 2,..., 8.

2.3.4. Topographic position index

The topographic position index is based on 
equation 3, formulated by Weiss (2001) and 
modified by Jennes (2006):

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑍𝑍0 − Σ𝑛𝑛−1(𝑍𝑍0/𝑛𝑛) 1        (3)

Where;

Zc = elevation of a focal cell

Zn = �elevation of integrated neighborhood 
cells within the scale of 75m

n = �The total number of the neighboring cells 
around the focal cell.

2.3.5. Vector roughness measure

The vector roughness measure estimation 
is based on calculating slope variability as a 
3-dimensional attribute of vertical and hori-
zontal aspect components. Hence, the slope 
and the Aspect of the study area are comput-
ed first. It is based on standard trigonometric 
operation according to the steps as presented 
in equation 4 (Sappington et al., 2007):

VRM = 1 − '(𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 2 + 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠 2 + 𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠 21 /752  (4) 1	

	

 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹sin  ⟑ , ∯ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠  1	

 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹⟑ , ∯ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2	

 𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ⟆ , ∯ = sum) 3	

⟑ = Aspect, ⟆  = slope, and ∯ = interface function, while 75 m represents the scale of 4	

computation. 5	

	

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = The  sum  of  Correctly  classified  pixels

Total  number  of  reference  pixels
× 100   (5) 1	

	
𝐾𝐾 𝐾 𝑁𝑁𝑁∑ 𝑥𝑥𝑖𝑖𝑖𝑖 )𝑟𝑟

𝑖𝑖𝑖𝑖 −(∑ (𝑥𝑥𝑖𝑖𝑖×𝑥𝑥+𝑖𝑖)𝑟𝑟
𝑖𝑖𝑖𝑖 )

𝑁𝑁2−(∑ (𝑥𝑥𝑖𝑖𝑖×𝑥𝑥+𝑖𝑖)𝑟𝑟
𝑖𝑖𝑖𝑖 )

  (6) 1	

      
VRM = 1 − '(𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 2 + 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠 2 + 𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠 21 /752  (4) 1	

	

 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹sin  ⟑ , ∯ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠  1	

 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹⟑ , ∯ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2	

 𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ⟆ , ∯ = sum) 3	

⟑ = Aspect, ⟆  = slope, and ∯ = interface function, while 75 m represents the scale of 4	

computation. 5	

	

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = The  sum  of  Correctly  classified  pixels

Total  number  of  reference  pixels
× 100   (5) 1	
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𝑁𝑁2−(∑ (𝑥𝑥𝑖𝑖𝑖×𝑥𝑥+𝑖𝑖)𝑟𝑟
𝑖𝑖𝑖𝑖 )

  (6) 1	

Where;
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 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹⟑ , ∯ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2	
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⟑ = Aspect, ⟆  = slope, and ∯ = interface function, while 75 m represents the scale of 4	
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Total  number  of  reference  pixels
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𝐾𝐾 𝐾 𝑁𝑁𝑁∑ 𝑥𝑥𝑖𝑖𝑖𝑖 )𝑟𝑟

𝑖𝑖𝑖𝑖 −(∑ (𝑥𝑥𝑖𝑖𝑖×𝑥𝑥+𝑖𝑖)𝑟𝑟
𝑖𝑖𝑖𝑖 )

𝑁𝑁2−(∑ (𝑥𝑥𝑖𝑖𝑖×𝑥𝑥+𝑖𝑖)𝑟𝑟
𝑖𝑖𝑖𝑖 )

  (6) 1	
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 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹sin  ⟑ , ∯ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠  1	

 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹⟑ , ∯ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2	

 𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ⟆ , ∯ = sum) 3	

⟑ = Aspect, ⟆  = slope, and ∯ = interface function, while 75 m represents the scale of 4	

computation. 5	

	

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = The  sum  of  Correctly  classified  pixels

Total  number  of  reference  pixels
× 100   (5) 1	

	
𝐾𝐾 𝐾 𝑁𝑁𝑁∑ 𝑥𝑥𝑖𝑖𝑖𝑖 )𝑟𝑟

𝑖𝑖𝑖𝑖 −(∑ (𝑥𝑥𝑖𝑖𝑖×𝑥𝑥+𝑖𝑖)𝑟𝑟
𝑖𝑖𝑖𝑖 )

𝑁𝑁2−(∑ (𝑥𝑥𝑖𝑖𝑖×𝑥𝑥+𝑖𝑖)𝑟𝑟
𝑖𝑖𝑖𝑖 )

  (6) 1	

VRM = 1 − '(𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 2 + 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠 2 + 𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠 21 /752  (4) 1	

	

 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹sin  ⟑ , ∯ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠  1	

 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹⟑ , ∯ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2	

 𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ⟆ , ∯ = sum) 3	

⟑ = Aspect, ⟆  = slope, and ∯ = interface function, while 75 m represents the scale of 4	

computation. 5	

	

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = The  sum  of  Correctly  classified  pixels

Total  number  of  reference  pixels
× 100   (5) 1	

	
𝐾𝐾 𝐾 𝑁𝑁𝑁∑ 𝑥𝑥𝑖𝑖𝑖𝑖 )𝑟𝑟

𝑖𝑖𝑖𝑖 −(∑ (𝑥𝑥𝑖𝑖𝑖×𝑥𝑥+𝑖𝑖)𝑟𝑟
𝑖𝑖𝑖𝑖 )

𝑁𝑁2−(∑ (𝑥𝑥𝑖𝑖𝑖×𝑥𝑥+𝑖𝑖)𝑟𝑟
𝑖𝑖𝑖𝑖 )

  (6) 1	

2.3.6. �Land use / cover and accuracy assess-
ment

The bands 1, 2, 3, 4, 5, 6, and 7 of Landsat 
8 OLI were exported into ArcMap 10.8.1 and 
stacked to obtain a composite band. The 
change in the computation of land use /land 
cover (LU/C) adopted the supervised mapping 
approach. For developing a training manag-
er sample for the computation exercise, the 
false-color composite bands for vegetation, 
water bodies, and built-up areas were com-
puted using the information presented in Ta-
ble 3. 

At least 20 return-on-investment training 
samples were randomly selected per three 
cells for every tonal variation in areas with a 
concentration of spectral reflectance. How-
ever, points chosen for the training manag-
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er samples matched historical images of the 
study area acquired from the Google Earth 
map. The LU/C computation was based on 
the five significant features with high sensitiv-
ity to soil erosion processes (Table 4). 

Table 3. Band selection and arrangement for land use/
land cover characterization (Butler, 2013).

Tabla 3. Selección y disposición de bandas para la 
caracterización del uso/cobertura del suelo (Butler, 

2013).

Composite feature Band combination used
Natural color 4   3   2
Built-up areas 7   6   4
Woodland 5   6   2
Scrubs and velds 6   5   2
Water bodies/bare 5   6   4

A signature file was generated following the 
characterization of false-color composite 
band reflectance. The supervised raster char-
acterization was mapped using a maximum 
likelihood approach at an equal priority prob-
ability weighting. The image classification ac-
curacy for respective years of the LULC was 
performed with 72 samples using the confu-
sion matrix. The confusion matrix was com-
puted by sampling 72 training cells randomly 
as the user’s value on the LULC. The sample 
is compared with a Google Earth Pro image 

of the same time slide and recorded as the 
producer’s value.

The overall accuracy and the Kappa coeffi-
cient are calculated as shown in equations 5 
and 6:

VRM = 1 − '(𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 2 + 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠 2 + 𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠 21 /752  (4) 1	

	

 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹sin  ⟑ , ∯ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠  1	

 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹⟑ , ∯ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2	

 𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ⟆ , ∯ = sum) 3	

⟑ = Aspect, ⟆  = slope, and ∯ = interface function, while 75 m represents the scale of 4	

computation. 5	

	

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = The  sum  of  Correctly  classified  pixels

Total  number  of  reference  pixels
× 100   (5) 1	

	
𝐾𝐾 𝐾 𝑁𝑁𝑁∑ 𝑥𝑥𝑖𝑖𝑖𝑖 )𝑟𝑟

𝑖𝑖𝑖𝑖 −(∑ (𝑥𝑥𝑖𝑖𝑖×𝑥𝑥+𝑖𝑖)𝑟𝑟
𝑖𝑖𝑖𝑖 )

𝑁𝑁2−(∑ (𝑥𝑥𝑖𝑖𝑖×𝑥𝑥+𝑖𝑖)𝑟𝑟
𝑖𝑖𝑖𝑖 )

  (6) 1	

 

VRM = 1 − '(𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 2 + 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠 2 + 𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠 21 /752  (4) 1	

	

 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹sin  ⟑ , ∯ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠  1	

 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹⟑ , ∯ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2	

 𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ⟆ , ∯ = sum) 3	

⟑ = Aspect, ⟆  = slope, and ∯ = interface function, while 75 m represents the scale of 4	

computation. 5	

	

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = The  sum  of  Correctly  classified  pixels

Total  number  of  reference  pixels
× 100   (5) 1	

	
𝐾𝐾 𝐾 𝑁𝑁𝑁∑ 𝑥𝑥𝑖𝑖𝑖𝑖 )𝑟𝑟

𝑖𝑖𝑖𝑖 −(∑ (𝑥𝑥𝑖𝑖𝑖×𝑥𝑥+𝑖𝑖)𝑟𝑟
𝑖𝑖𝑖𝑖 )

𝑁𝑁2−(∑ (𝑥𝑥𝑖𝑖𝑖×𝑥𝑥+𝑖𝑖)𝑟𝑟
𝑖𝑖𝑖𝑖 )

  (6) 1	

where r is the number of rows in the error 
matrix, xii is the classified pixels in row I and 
column I, xi+ and x+i are the pixels in row I and 
column I, and N is the total number of the 
sampling points used.

The overall classification accuracy and the 
Kappa coefficient value for the resultant er-
ror matrix of the computed LU/C showed a 
near-perfection deduction, with the overall 
accuracy and Kappa coefficient being 86.11% 
and 82.49% (Table 5). The user’s value is com-
puted along the rows, while the producer’s 
value is calculated along the column.

The reflectance distribution was classified 
as values, while the characteristic cells were 
enumerated as counts in the attribute table, 
which was extracted for each raster for fur-
ther statistical estimation. 

Table 4. Thematic categories for land use/land cover mapping.
Tabla 4. Categorías temáticas para la cartografía de uso/cobertura del suelo.

LU/C Features Description

Built-up areas Areas predominated with artificial imperviousness cover, such as tarred or plastered 
roads, plastered parks, residential, institutional, and commercial buildings.

Waterbody Areas with evidence of natural ponds or flow. This includes lakes, dams, open 
streams, rivers, natural pools, etc.

Woodland
Areas predominated with an advanced stage of tree growth with a possible high 
vegetation density greater than 50%. This includes areas dominated by thickets, 
canopy trees, and deciduous trees.

Scrubs and Veld Areas with sparse shrubs, veld, possible cropping or grazing activities with 
vegetation density within 20%  - 50% and vegetation height, not more than 1.80 m.

Bare-ground Areas exhibiting signs of severe degradation, clear-cuts, with scanty grass cover and 
shrubs, untarred (dirt) roads, and with low vegetation density, less than 20%.
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Table 5. LULC classification accuracy assessment based on error and confusion matrix.
Tabla 5. Evaluación de la precisión de la clasificación LULC basada en la matriz de error y confusión.

Land Use/ Cover Built-up 
area

Bare 
ground Forest Veld Water 

body Total Comm 
error

User’s 
accuracy

Built-up area 11 1 0 3 0 15 26.67 73.33
Bare ground 0 15 0 3 0 18 16.67 83.33
Forest 0 0 10 1 0 11 09.09 90.91
Veld 0 1 1 14 0 16 12.50 87.50
Water body 0 0 0 0 12 12 00.00 100
Total 11 17 11 21 12 72

Omission error 0 11.76 09.09 33.33 0
Producer’s accuracy 100 88.24 90.91 66.67 100

Overall accuracy (%) 86.11
Kappa coefficient (%) 82.49

2.3.7. Geological Spatial distribution

The Eastern Cape geology map (scale 
1:250,000) was acquired from the Council 
for Geoscience Studies (CGS) and modified 
by extracting the study area. The clipped 
data was converted into a raster file and re-
classified based on the mudstone-sandstone 
ratio, while dolerite was the most resistant 
rock among the geologic class. Różycka et al. 
(2017) noted that mudstone-dominated ma-
terials are highly susceptible to landslide and 
mass waste. Hence, this served as a basis for 
litho-material reclassification for vulnerabil-
ity mapping. Details of mudstone content in 
the Eastern Cape Karoo Supergroup are docu-
mented in Owolabi et al. (2021b). 

2.4. Overlay analysis

The maps prepared earlier were reclassified 
and assigned a weight based on their suscep-
tibility potential. Assignment of weightage 
was majorly based on review and expert judg-
ment. Hence, VRM was assigned the least 
weightage (12) while LU/C is rated highest 
(16) due to its vulnerability tendency at the 
zones of morphogenetic alteration. DD, TWI, 
TRI, TPI, and Geology were assigned similar 

weights (15) (Table 6). The weighted sum 
method of overlay analysis was employed to 
compute the vulnerability analysis using the 
weightage of layers (Table 6) and the pro-
posed Soil Erosion Potential Areas, SEPA, in 
equation 7;

	
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆 ∑ (𝑊𝑊𝑖𝑖 × 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 )7

𝑖𝑖𝑖𝑖      (7)  1	

	
	

where Wi represents the weight for factor i 
and fsij Represents the field score of class j 
of factor i. The weighted sum approach was 
built in ArcMap 10.8.1. The SEPA index is clas-
sified into five major zones: critically high, 
high, medium, low, and non-vulnerable soil 
erosion areas.

2.5.	�Validation of soil erosion vulnerability 
map

The assessment was validated using a Google 
Earth map survey. Unlike field mapping, which 
may be limited by inaccessibility and cover-
age, the Google Earth map offers a 3-dimen-
sional view without a restriction to length. 
Eighty-three spots within the None/very low, 
low, moderate to high soil erosion zones were 
georeferenced randomly from the soil ero-
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sion vulnerability map for visual inspection 
and analysis under the Google Earth map. The 
Google Earth time was set to the default (with 
variation between December 2019 and April 
2020) as deployed by CNES/Airbus. The sam-
pling points were carefully randomized across 

the entire catchment area and tributaries to 
prevent the monotony of attributes in the river 
valley (Vrieling et al., 2006). Hence, sampling 
points are not in the center of the catchment. 
Information filtered from the use of Google 
Earth includes the following:

Table 6. Weightage of thematic layer for overlay analysis of vulnerability map production.
Tabla 6. Ponderación de la capa temática para el análisis de superposición de la producción de mapas  

de vulnerabilidad.

Thematic layer (Weight) Classes  Field score Field Weight

Drainage density (15)

Very low 1 1.88
Ineffective 2 3.75
Effective 7 13.13
Ponding 8 15.00

Topographic wetness index (15)

None 1 2.5
Low 2 5.0
Moderate 5 12.5
High 6 15.0

Terrain ruggedness index (15)
Flat 1 3
Low 2 6
Moderate 4 12
High 5 15

Topographic position index (12)

Very low 1 03.75
Low 4 15.00
High 5 18.75
Very high 6 22.50

Vector roughness measure (12)
Very low 1 2.4
Low 2 4.8
High 4 9.6
Very high 5 12

Geology (15)

Jurassic Dolerite 1 2.5
Quaternary sand 2 5
Middleton Formation 3 7.5
Katberg Formation 4 10
Balfour Formation 6 15

Land use/ land cover (16)

Woodland 1 2
Scrub and Veld 2 4
Built-up 5 10
Water bodies 6 12
Bare 8 16En
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1.	� Discrimination of erosion channel from a 
drainage channel. 

2.	� Identification of erosion type.

3.	� Linear measurement of the erosional 
path.

4.	� Extraction of camera height for the reso-
lution of magnification.

5.	� Classification of slope and bareness of the 
affected area.

6.	� Estimation of soil erosion proneness.

The visual interpretation and estimation of 
Soil erosion proneness using the Google Earth 
map survey was informed by Dwivedi and Ra-
mana (2003) and Vrieling et al. (2006), indi-
cated in equation 8:

Ep = 𝑓𝑓𝑏𝑏⨯𝑓𝑓𝑠𝑠⨯𝑀𝑀𝑟𝑟𝑟𝑟 )Σ𝑁𝑁𝑔𝑔 +Σ𝑁𝑁𝑟𝑟 +Σ𝑁𝑁𝑠𝑠.
100

   (8) 1	

	

PPV = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

   (9) 1	

	
NPV = 𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
   (10) 1	

where Ep is the erosion proneness, fb is the 
bareness factor, fs is the slope factor, Mrf is 
the camera reference scale in km, Ng is the 
normalized length of a gully in km, Nr is the 
normalized length of a rill in km, and Ns is the 
length of the sheet in km. The length of the 
rill and gully are normalized by the multiples 
of 2 and 3, respectively, due to the variation 
in depth of impact. The designation of rating 
factors based on bareness and the extent of 
the slope was based on Table 7.

The calculated soil erosion proneness was 
tabulated with its georeference and the cor-
responding grid codes for soil vulnerability 
drawn from georeference identity. The ex-
tracted grid codes are plotted against the Ep 
for its coefficient of determination. Based on 
the coefficient of determination (R2), R2 < 0.5 
indicates that the model is unreliable and 
does not replicate the field observation. R2 = 
0.5 suggests that the model is reliable as 50% 
of the field observation correlates with the 
simulation provided, while R2 ≥ 0.75 indicates 

that the model is excellent in replicating the 
field observation. 

Table 7. The rating factor is used for calculating 
erosion proneness.

Tabla 7. El factor de calificación se utiliza para calcular 
la propensión a la erosión.

Attributes Rating factors
Bareness 1
Densely riparian 2
Lightly vegetated 3
Veld 4
Bared 5
Peneplain 1
Pediplain 2
Fair hillslope 3
Abrupt hillslope 4

The performance of SEPA was further as-
sessed graphically using the Receiver oper-
ating characteristics curves (ROC). ROC is a 
binary probabilistic algorithm that evaluate 
model performance by quantifying the co-
herence of predicted data with the ranked 
probabilities of the observed data using the 
plot of model sensitivity against the probable 
extent of model specificity from 100% (Ver-
bakel et al., 2020; Halder et al., 2021). The 
model sensitivity estimates the proportion of 
the positive predictive value (PPV) among the 
actual noncase, the specificity estimates the 
proportion of the negative predictive value 
(NPV) while the area under curve (AUC) pro-
vides the goodness of the fit. ROC curve has 
provided crucial metrics in similar soil erosion 
susceptibility mapping involving morphomet-
ric parameters among others (Hembram et 
al., 2019; Halder et al., 2021; Biswa and Giri, 
2023; Dutta et al., 2024).

The model sensitivity and specificity are ob-
tained using equations 9 and 10:
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Ep = 𝑓𝑓𝑏𝑏⨯𝑓𝑓𝑠𝑠⨯𝑀𝑀𝑟𝑟𝑟𝑟 )Σ𝑁𝑁𝑔𝑔 +Σ𝑁𝑁𝑟𝑟 +Σ𝑁𝑁𝑠𝑠.
100

   (8) 1	

	

PPV = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

   (9) 1	

	
NPV = 𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
   (10) 1	

Ep = 𝑓𝑓𝑏𝑏⨯𝑓𝑓𝑠𝑠⨯𝑀𝑀𝑟𝑟𝑟𝑟 )Σ𝑁𝑁𝑔𝑔 +Σ𝑁𝑁𝑟𝑟 +Σ𝑁𝑁𝑠𝑠.
100

   (8) 1	

	

PPV = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

   (9) 1	

	
NPV = 𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
   (10) 1	

Where TP denotes the true positive, FN de-
notes the false negative, FP denotes the false 
positive, and TN denotes the true negative. 
The model sensitivity and specificity in this 
study are obtained by classifying the grid-
codes into two; from the moderate with low 
grid-code (Grid-code ≤ 350) and moderate to 
very high soil erosion (Grid > 350) and extract-
ing the frequencies of higher (lower) , 
relative to the grid codes about varying sce-
narios of class threshold and vice-versa. The 
higher (lower)  are cross-tabulated as 
the significantly (insignificantly) eroded fre-
quencies, against the “Grid > 350” (Grid-code 
≤ 350) with the rationale that higher (low-
er)  and “Grid > 350” (Grid-code ≤ 350) 
cross-tabulation provides the true positive, 
TP (true negative, TN). The positive likelihood 
ratio was derived by obtaining the slope of 
sensitivity/(1-sphericity), while the Area Un-
der Curve (AUC) was obtained by integrating 
the sensitivity variables over sphericity vari-
ables. The optimum threshold was obtained 
from the outcome resulting in the largest sen-
sitivity and sphericity from the grid codes.

In addition, a fishnet (20 by 20) is created in 
ArcMap to discretize the entire study area 
for critical validation. The discreet units pro-
duced 400 units, with 1.92 km by 1.13 km, 
which was further trimmed into 219 units by 
removing units whose centroids were out-
side the study portion. The predicted SEPA 
for each discreet unit was extracted zonal for 
the dominating (majority) SEPA class. Also, 
the 2020 regional land use/ land cover map 
of South Africa of 73 classes was further re-
classified into 8 (Forested area, Shrub cover, 
grass cover, water bodies, bare area, farm-
ing area, settlements, and developed area) 
and extracted for the dominating class. The 

validation of each discreet unit is based on 
Le Roux’s (2012) approach through visual in-
terpretation and vectorization aided by Sys-
tème Pour l’Observation de la Terre (SPOT) 5 
imagery at a scale of 1:10,000. In this study, 
Google Earth and 216.96 ha reference scale 
were used, while the visual interpretation 
was based on the following assumptions per 
the dominating SEPA class;

•	� Class 1 observation represents the 
non-vulnerable area based on a signifi-
cant proportion (70%) of the area being 
relatively covered by vegetation, with sta-
ble soil conditions, or with natural land-
scape attributes (Owolabi et al., 2023).

•	� Class 2 observation represents the area 
with a significant proportion (35%) of the 
terrain exhibiting the potential for soil 
erosion based on exposure of the subsoils 
in critical/ vulnerable drainage channels, 
the non-conservative land use/ land cover 
features, and track evidence of sheet ero-
sion. 

•	� Class 3 observation represents the area 
with a significant proportion (35%) of the 
terrain exhibiting clear evidence of rills, 
inter-rills, subsoils, and channel erosion.

•	� Class 4 observation represents the area 
with a significant proportion of gully de-
velopments, extensive rills, inter-rills, and 
unnatural channel dissections with solid 
evidence of subsoil crevices.

The four classifications were used with the 
rationale that class-1, -2, and -3 observations 
would be replicated by SEPA prediction with 
non-vulnerable, low, and medium soil erosion 
potential. At the same time, class-4 is expect-
ed to replicate SEPA prediction with high and 
critically high soil erosion potential. Overall, 
the observed and predicted classes are tested 
using confusion matrices. The deductions are 
corroborated by the Regional Land use/ land 
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cover features of 2020 provided by the De-
partment of Environmental Affairs of South 
Africa.

3.	 Results

3.1. Morphometric Parameters analysis

The drainage density (DD) computation shows 
that the Tyume River Basin (TRB) is charac-
terized by an elongated but dendritic fluvial 
network with a southward river flow influ-
enced by terrain physiography (Figure 3A). 
The high DD are areas of surface water accu-
mulation. Moderate DD areas are active hy-
draulic actions and soil transportation, while 
low sections are areas of infrequent drainage 
activities. The shallow sections are ridges bor-

dering the watershed. Topographic wetness 
index maps have been noted to provide infor-
mation on the areas of soil moisture accumu-
lation, soil depth, soil thickness, and zones of 
possible offsite soil erosion by water (Figure 
3B). The classification of the TWI revealed 
that the high TWI (4%) has the least coverage, 
followed by the moderate TWI (8%), the low 
(36%), and the none TWI section (52%) having 
the largest coverage. Terrain ruggedness in-
dex (TRI) reveals landforms corresponding to 
terrain features such as hilly terrains, ridges, 
heaps, cols, passes, and valleys (Figure 3C). 
The high TRI zones correlate visually with the 
geologic basement, exhibiting high erosion 
resistance zones. At the same time, the low 
TRI aligns with the plain and tends to exhib-
it soil erosion vulnerability. The Topographic 
position index (TPI) plot impresses with the 

Figure 3A. Drainage density together with the stream 
network of Tyume basin.

Figura 3A. Densidad de drenaje junto con la red de 
arroyos de la cuenca de Tyume.

Figure 3B. Topographic wetness index  
of Tyume Basin.

Figura 3B. Índice de humedad topográfica de la 
cuenca de Tyume.
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Figure 3C. Terrain roughness index of Tyume Basin.
Figura 3C. Índice de rugosidad del terreno de la cuenca 

de Tyume.

Figure 3D. Topographic position index of Tyume Basin.
Figura 3D. Índice de posición topográfica de la cuenca 

de Tyume.

Figure 3E. Vector roughness measure of Tyume Basin.
Figura 3E. Medida de rugosidad vectorial de la cuenca 

de Tyume.

Figure 3F. Lithology of Tyume basin (Robb et al., 2006).
Figura 3F. Litología de la cuenca Tyume (Robb et al., 

2006).
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terrain physiography, thus depicting the de-
pressions along the Tyume River track (Figure 
3D). The high TPI are areas of significant con-
cavity, signaling the potential for gully or val-
ley development, while the low TPI are areas 
of convexity and the possible lines of a con-
tinuous slope. The Vector roughness measure 
(VRM) plot provides information on the area 
of abrupt curvature based on the integration 
of slope and aspect variability (Figure 3E). The 
high VRM captures the areas of high hydrau-
lic pressure and erosivity potential, while the 
low VRM captures the areas of low curvature 
and low erosivity potential.

3.2. Gology

The geological information of the Tyume ba-
sin comprises the basement (hard rock), the 
sedimentary rock (soft rock), and the qua-

ternary sediments covering about 553 km2 
(81%), 90 km2 (13%), and 12.85 km2 (2%) 
(Figure 3F). The Quaternary sediments are 
products of fluvial outwash from bedform as-
semblages through the complex interplay of 
climate and geo-allogenic processes such as 
tectonic subsidence, rifting, and hinterland 
erosion (Wilson et al., 2014; Owolabi et al., 
2021b). The high mudstone content of the 
Balfour Formation typifies its high tendency 
for soil erodibility; hence, it scored higher 
weightage than the Katberg Formation, Mid-
dleton Formation, Quaternary sediments, 
and the Dolerite, which is highly resistant to 
hydraulic fracturing.

3.3. Land use/ cover

The LU/C map shows that the vegetation 
covers 48% of the entire TRB, with the for-
est and scrub-and-veld occupying 89.88 km2 
and 215.25 km2 (Figure 3G). The water bod-
ies were visible within 3.65 km2. The built-up 
area and the bare ground covered 178.66 km2 
and 154.92 km2, respectively (Figure 3G). Veg-
etation is the most significant LU/C feature to 
soil erosion mitigation due to its root system 
and canopy cover actions against erosion due 
to overland flow, interflow, and rain-splash, 
as well as the organic deposits improving soil 
structure against erodibility (Parwada and Van 
Tol, 2016). Due to the essential role of vegeta-
tion, the woodland and scrub-to-veld cover are 
ranked as the least. The bare is ranked highest 
due to its high vulnerability to soil erosion. In 
contrast, the water area is ranked lower than 
the bare ground because soil detachment and 
abrasion are highest on the bank. At the same 
time, transportation and degradation only oc-
cur within the water body.

3.4. Vulnerability map of water soil erosion 

Soil erosion potential area index obtained 
ranges in vulnerability from critically high, ap-

Figure 3G. Land use-cover map of Tyume basin for the 
year 2019.

Figura 3G. Cobertura de uso del suelo de la cuenca de 
Tyume para el año 2019.
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proximately 40 km2 (6%), high, 135 km2 (20%), 
medium, 209 km2 (31%), and low, 186 km2 
(27%), to a non-vulnerable degree, 113 km2 
(17%) (Figure 4). The zone of high soil erosion 
vulnerability is concentrated in the northeast 
and west, where land development is high, 
and in the southwest and south, where plain 
and riparian activities favor intense cultivation 
and pastures. Fundamentally, drainage paths 
often follow alterable morphogenetic paths 
with high permeability or susceptibility to hy-
draulic action. Exposure and lowering of soil 
aggregate with the drainage path raise channel 
vulnerability and the development of rills.

3.5. �Corroboration of the soil erosion vulner-
ability map

The sixty-three assessment points were ran-
domly picked from moderate to highly vulner-
able zones for Google Earth scenery sampling 
and analysis. Of the sixty-three points, seven 
points have no soil erosion indication or ero-
sional drainage, while twenty-one show mild 
soil erosional tracks, as shown in Figures 5 A 
– B. About 55% of the sampled field points 
show distinct erosional features of gully, rill, 
and sheet erosions and areas where mass 
wastes resulted from aggregation of the soil 
erosions (Figure 5B). Related grid codes of 
sampled points were extracted in the ArcM-
ap to provide a platform for assessing model 
accuracy, validation, and corroboration (Ta-
ble 8). The coefficient of determination (R2) 
shows a reliable confidence level in the mod-
el as the actual field condition is average (Fig-
ure 6). This suggests that about 55% percent 
of the degree of evaluation is satisfied by the 
assessment and indicates that SEPA approach 
can be adopted for soil erosion modeling if 
the statistical classifier and other significant 
factors can be included. The model was fur-
ther diagnosed using the Receiver Operating 
Characteristics curve (ROC) due to its robust-
ness and the in-depth information it provides 
(Figure 7). The plot indicated that the model 

Figure 4. Tyume River basin vulnerability by soil 
erosion by water showing the vulnerable spots within 

the basin.
Figura 4. Vulnerabilidad de la cuenca del río Tyume 

por la erosión hídrica.

Figure 5A. View of areas of mild soil erosion by water 
(shown with blue arrows).

Figura 5A. Vista de áreas de leve erosión del suelo por 
el agua (mostradas con flechas azules).
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Figure 5B. View of tracks of soil erosion by water (Areas of mass waste resulting from rill erosion are shown with red 
arrows, rill erosion tracks are shown with yellow/orange arrows)

Figura 5B. Vista de las huellas de la erosión hídrica del suelo (las áreas de depósitos resultantes de la erosión en surcos 
se muestran con flechas rojas, las huellas de la erosión en surcos se muestran con flechas amarillas/naranjas).

Figure 6. Plot of accuracy assessment of Tyume soil 
erosion by water modeling.

Figura 6. Gráfico de evaluación de la precisión de 
la erosión del suelo de Tyume mediante modelado 

hídrico.

Figure 7. Receiver Operating Characteristics curve of 
soil erodibility validation.

Figura 7. Curva de características operativas  
del receptor de validación de la erosionabilidad  

del suelo.
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Table 8. Data of estimated erosion proneness with Tyume River basin
Tabla 8. Ubicación del centroide de la cuenca, tipo de cuenca cuaternaria y área en kilómetros cuadrados.

Longitude 
(Degree)

Latitude 
(Degree) Counts ID-code Bareness Slope Erodibility km2 Camera  km2

26.977 -32.623 730 A-01 4 4 120.676 753
26.977 -32.634 725 A-02 3 4 261.048 759
26.981 -32.613 690 A-03 3 4 37.5937 1035
26.951 -32.626 745 A-04 4 2 78.823 1179
26.936 -32.638 750 A-05 3 2 68.236 1027
26.944 -32.617 745 A-06 4 3 162.453 784
26.951 -32.656 655 A-08 2 3 48.745 1189
26.951 -32.67 750 A-09 3 3 274.65 789
26.931 -32.68 540 A-10 3 1 6.841 1060
26.903 -32.657 495 A-12 1 1 0.231 2160
26.956 -32.736 735 A-13 2 2 74.792 1304
26.94 -32.729 565 A-14 2 1 6.562 1217

26.935 -32.75 425 A-15 1 1 0.113 1843
26.913 -32.767 535 A-16 2 2 11.286 922
26.904 -32.797 740 A-17 3 2 69.474 1130
26.902 -32.8 735 A-18 3 3 73.392 1668
26.911 -32.808 745 A-19 3 2 67.138 1047
26.869 -32.811 730 A-20 4 2 59.261 811
26.87 -32.838 435 A-21 3 1 0.626 1520

26.917 -32.838 635 A-22 2 1 35.927 943
26.901 -32.843 550 A-23 2 2 16.588 2326
26.912 -32.863 740 A-24 3 3 98.763 668
26.931 -32.887 635 A-25 3 2 32.558 864
26.892 -32.877 550 A-26 3 3 12.256 1202
26.853 -32.877 455 A-27 2 1 0.102 2139
26.828 -32.846 490 A-28 1 1 0.145 1048
26.829 -32.864 495 A-29 1 1 0.156 1150
26.816 -32.85 470 A-30 1 1 0.245 1342
26.844 -32.835 475 A-31 3 3 0.287 1334
26.87 -32.825 490 A-32 4 3 0.234 1374

26.901 -32.844 640 A-33 2 2 23.316 867
26.837 -32.818 535 A-34 3 2 10.556 1460
26.831 -32.819 575 A-35 3 2 2.723 1162
26.817 -32.798 455 A-36 2 1 0.532 940
26.823 -32.824 710 A-37 4 3 135.939 865
26.815 -32.791 410 A-38 2 1 0.362 1609
26.826 -32.775 570 A-39 3 1 2.31 1334
26.785 -32.762 750 A-42 4 2 72.661 1204
26.802 -32.746 625 A-43 4 2 23.153 3379
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is reliable and will perform well due to the 
ROC curve’s concavity, that is, the proximity 
of threshold 1 (optimum tangential path of 
the parabola), which drifts away from the 
diagonal to the standard angle. The area un-
der the ROC is 0.867, which implies that the 
degree of separability of the model between 
the positive and the negative outcome to the 
actual soil erodibility potential is excellent, 
reliable, and highly predictive. The optimum 
sensitivity and sphericity lie on 510 grid-code; 
hence, a grid-code value more significant 
than this indicates the possible existence of 
soil erosion features. The validation shows no 
discrimination between the gully and rill ero-
sion features captured by the high zones of 
the vulnerability assessment. This is probably 
due to the resolution of the digital elevation 
model used, which was 30 m by 30 m.

Meanwhile, most of the gully features were 
continuous from the rill features, whereas 
the latter is the dominant feature in the ba-
sin. The erosion features are peculiar to the 
areas of bareness, which are often near set-
tlements or townships. As guided by Google 
Earth corroboration, most of the eroded ar-
eas within the bare zones were character-
ized by rill erosion. Areas of high relief and 
slope also contribute significantly to the soil 
erosion features where most features taper 
from sheet to gully erosional features. Most 
of the erosional features were connected to 
the natural drainage. The validation exercise 
shows that many vulnerable spots are associ-
ated with either gullies or a collection of long 
inter-rills. In the north, most of them lie in the 
bare or grassland area, while in the center 
and south of the basin, the vulnerable area 
occupies the cultivated and bare grounds sur-
rounding the riparian lands (Figure 5A; A-10, 
A-14). The broadest vulnerable south area is 
characterized by an overgrazed expanse of 
rangeland whose drainage channel is badly 
mutilated, possibly by overstocking or uncon-
trolled cattle patronage.

Similarly, the corroboration based on holistic 
assessment with GIS fishnet and Google Earth 
validation is presented in Table 9. The holistic 
investigation based on the GIS fishnet cap-
tured 219 zones per 216.96 ha. The dominat-
ing (majority) SEPA attributes which consti-
tute the predicted values comprise 31, 66, 97, 
and 25 counts for Class-1, -2, -3, and -4, rela-
tive to the 53, 93, 61, and 12 counts for the 
accurate observation based on Google Earth 
validation, respectively. Also, the matrices of 
the observed classes and the major SEPA pre-
dictions generated the result presented in Ta-
ble 10. The investigation showed that 38% of 
areas identified as being dominantly non-vul-
nerable were contrarily associated with low 
soil erosion potential, while SEPA predictions 
are 64%, 49%, and 44% accurate for Class-2, 
-3, and -4, thus depicting an overestimation 
of soil erosion potential. The regional LUC 
showed that the erroneous estimates lie in 
areas dominated by grassland, partly affect-
ed by bareness within the hillslope, followed 
by the forested areas in the hillslope partly 
associated with bareness and subsoil expo-
sure. The corroboration showed that the top-
ographic model for soil erosion is excellently 
sensitive to areas with glaring soil erosion 
development. At the same time, it provides 
a considerable approximation for the high-
ly eroded and non-vulnerable area, drawing 
from the sensitivity and specificity results. 
The overall accuracy and Kappa coefficient of 
SEPA prediction are 55% and 36%, respective-
ly, suggesting moderate reliability of the mod-
el, although with a low representation of the 
actual ground situation. 

4.	 Discussion

The modeling of TRB enabled the characteri-
zation of the terrain susceptibility to soil ero-
sion into five vulnerable zones: critically high, 
high, medium, low, and none. The model is 
computed by integrating the thematic lay-
ers of morphometric parameters, LU/C, and 
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Table 9. Few of the data drawn from the holistic visual evaluation based on Le Roux (2012).
Tabla 9. Algunos de los datos extraídos de la evaluación visual holística basada en Le Roux (2012). 

SN Longitude Latitude Predicted Observed SN Longitude Latitude Predicted Observed
1 26.88444 -32.9053 1 1 43 26.92059 -32.8357 4 4
2 26.89649 -32.9053 1 1 44 26.93264 -32.8357 4 4
3 26.90854 -32.9053 2 1 45 26.81214 -32.8183 2 1
4 26.92059 -32.9053 1 2 46 26.82419 -32.8183 3 1
5 26.93264 -32.9053 3 3 47 26.83624 -32.8183 4 3
6 26.86034 -32.8879 2 1 48 26.84829 -32.8183 4 3
7 26.87239 -32.8879 3 2 49 26.86034 -32.8183 3 1
8 26.88444 -32.8879 3 2 50 26.87239 -32.8183 4 4
9 26.89649 -32.8879 2 1 51 26.88444 -32.8183 3 3

10 26.90854 -32.8879 2 2 52 26.89649 -32.8183 2 2
11 26.92059 -32.8879 2 2 53 26.90854 -32.8183 3 3
12 26.93264 -32.8879 4 4 54 26.92059 -32.8183 3 3
13 26.82419 -32.8705 3 2 55 26.80009 -32.8009 3 2
14 26.83624 -32.8705 4 3 56 26.81214 -32.8009 3 2
15 26.84829 -32.8705 4 3 57 26.82419 -32.8009 3 1
16 26.86034 -32.8705 4 3 58 26.83624 -32.8009 1 1
17 26.87239 -32.8705 4 3 59 26.84829 -32.8009 2 2
18 26.88444 -32.8705 3 2 60 26.86034 -32.8009 3 2
19 26.89649 -32.8705 3 3 61 26.87239 -32.8009 3 1
20 26.90854 -32.8705 3 3 62 26.88444 -32.8009 3 1
21 26.92059 -32.8705 3 3 63 26.89649 -32.8009 3 3
22 26.93264 -32.8705 2 2 64 26.90854 -32.8009 4 4
23 26.81214 -32.8531 3 1 65 26.92059 -32.8009 1 2
24 26.82419 -32.8531 3 1 66 26.93264 -32.8009 1 2
25 26.83624 -32.8531 3 1 67 26.77599 -32.7835 4 3
26 26.84829 -32.8531 4 2 68 26.78804 -32.7835 2 2
27 26.86034 -32.8531 3 2 69 26.80009 -32.7835 1 2
28 26.87239 -32.8531 4 3 70 26.81214 -32.7835 3 2
29 26.88444 -32.8531 3 2 71 26.82419 -32.7835 4 4
30 26.89649 -32.8531 2 2 72 26.83624 -32.7835 4 3
31 26.90854 -32.8531 4 2 73 26.84829 -32.7835 2 2
32 26.92059 -32.8531 3 3 74 26.86034 -32.7835 3 2
33 26.93264 -32.8531 4 2 75 26.87239 -32.7835 2 2
34 26.81214 -32.8357 3 1 76 26.88444 -32.7835 3 3
35 26.82419 -32.8357 3 1 77 26.89649 -32.7835 3 2
36 26.83624 -32.8357 3 1 78 26.90854 -32.7835 2 1
37 26.84829 -32.8357 3 2 79 26.92059 -32.7835 2 2
38 26.86034 -32.8357 2 1 80 26.93264 -32.7835 2 2
39 26.87239 -32.8357 2 2 81 26.77599 -32.7661 3 2
40 26.88444 -32.8357 3 2 82 26.78804 -32.7661 3 2
41 26.89649 -32.8357 2 2 83 26.80009 -32.7661 3 3
42 26.90854 -32.8357 4 3 84 26.81214 -32.7661 1 2
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geology. The deduction of the ROC curves, 
89.9%, validates the vital essence of the ge-
omorphic-based model for the soil erosion 
susceptibility model. At the same time, the 
confusion matrices clarify the model’s per-
formance in terms of its sensitivity, spec-
ificity, accuracy, extent of representation, 
excesses, and limitations. At the same time, 
it corroborates ROC curve finding. Based on 
the holistic corroboration with confusion 
matrices (Tables 9-10), the exceptionally 
high and high, accentuated by class-4 (44%), 
corresponded with the Hillslope farming 
area possibly abandoned or used for farm-

ing. Some are associated with bareness and 
deciphered to have served as a farming area 
before being abandoned. There are cases 
where urbanization induces channel ero-
sion. The regional land use/cover map con-
firmed that grasses covered most of this 
area, whereas Google Earth showed traces 
of fallowing and abandonment.

The erroneously captured area was domi-
nated by scanty shrub covered with exposed 
subsoil. The moderately eroded portion, ac-
centuated by Class-3 dominance, is mainly 
associated with bareness and channel ero-

Table 10. Confusion matrices for the holistic evaluation of model performance.
Tabla 10. Matrices de confusión para la evaluación general de la aplicación del modelo.

Observed Google Earth classification value

  Class-1 Class-2 Class-3 Class-4

SE
PA

 
Pr

ed
ic

te
d 

Va
lu

e

Class-1 19 12 0 0
Class-2 22 42 2 0
Class-3 12 36 48 1
Class-4 0 3 11 11

Class: 1 Class: 2 Class: 3 Class: 4
Sensitivity 0.358 0.452 0.787 0.917
Specificity 0.928 0.810 0.690 0.932
Pos Pred Value 0.613 0.636 0.495 0.440
Neg Pred Value 0.819 0.667 0.893 0.995
Prevalence 0.242 0.425 0.279 0.055
Detection Rate 0.087 0.192 0.219 0.050
Detection Prevalence 0.142 0.301 0.443 0.114
Balanced Accuracy 0.643 0.631 0.738 0.925

Overall Statistics
Accuracy: 0.5479

95% CI: (0.4795, 0.6151)
No Information Rate: 0.4247

P-Value [Acc > NIR]: 0.0001602
Kappa: 0.3616

Mcnemar’s Test P-Value: < 0.00000
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sion. The soil type also played a significant 
role in the erodibility of the soil, as shown by 
the numerous subsoil exposures in the area. 
With TRB being dominated by Calcic Vertisol 
and Calcaric Regosol (Dijkshoorn et al., 2008), 
an uncoordinated use of such land, such as 
excessive grazing, hillslope farming, and un-
coordinated afforestation after fallowing may 
render Vertisol and Regosol soil types vulner-
able to soil erosion. Basga et al. (2020) noted 
that vertisols and regosols are highly suscep-
tible to soil erosion by water due to their ex-
pansivity and slow filtration. Both soils dom-
inate areas where farming activities and land 
abandonment possibly render the terrain vul-
nerable to soil erosion. Numerous authors, 
including van Leeuwen et al. (2019), Yue et al. 
(2020), and Shtober-Zisu et al. (2024), high-
lighted several cases of soil degradation pro-
cess initiated by farmland abandonment as 
posited in this study. However, the significant 
factor captured as the driver of soil erosion is 
the sparsely vegetated, fallow, or bare surface 
with weak topsoil, where settlement, farming 
activities, or farm abandonment are evident, 
especially by the hillslope and frequently 
drained area (Figure 4).  

The spatial trend exhibited by the soil erosion 
vulnerability map indicated the concentra-
tion of extreme soil erosion vulnerability in 
the northwest, west, southwest, and south. 
The northeast represents the high relief area 
with abrupt concavity and slope, which may 
enhance runoff-erosivity by the hillslope and 
create an erosive plunge at the foothill. High 
relief area in Tyume Catchment to the east 
has been classified as the hinterland of the 
Great Escarpment, where upsurging tectoni-
cally emplacement sub-mountain range could 
trigger orographic rainfall with high intensity 
and erosivity (Zengeni et al., 2016). As a re-
sult, the terrain analysis provides vital infor-
mation about the soil erosion vulnerable are-
as induced by the topographic features. Being 
aided by LUC and the geology map, the MPs 

suitably fulfill the geomorphic and hydrologic 
requirements of soil erosion models by sim-
ulating the areas of possible runoff erosivity 
based on the terrain roughness, concavity, 
and topographic position closeness based on 
the TRI, VRM, and TPI deduction. The DD and 
TWI also indicate the area of frequent runoff, 
accumulation, and channel erosivity. Shto-
ber-Zisu et al. (2024) remarked on the excel-
lent performance of TRI in identifying areas 
with soil erosion incision due to high rainfall 
erosivity.

Meanwhile, Owolabi et al. (2020) provided 
the vast application of DD and TWI for deter-
mining the area of hydrologic inundation, re-
sulting in the dissolution and degradation of 
the vulnerable regions induced by land use/ 
cover activities based on the underlying ge-
ologic type. Based on the extreme soil ero-
sion vulnerability in the northeast, this study 
shared common ground with Hembram et al. 
(2019), who noted that soil erosion showed 
the highest sensitivity to relief characteristics 
among other contributing morphometric fac-
tors. Prior investigations also demonstrated 
the alarming rate of soil erosion in the high 
reliefs within the Eastern Cape with similar 
LU/C patterns and soil types (Phinzi and Nge-
tar, 2019; Libala et al., 2020; Gwapedza et al., 
2021).

The west, southwest, and south of Tyume are 
relatively flat and low in altitude; however, 
severe bareness is connected with the built-
up area. Tyume South is characterized by a 
high rate of rural settlement, whose leading 
economy is dominated by livestock and tra-
ditional farming (Fatumo et al., 2021). Chun-
gag et al. (2017) noted that Tyume south is 
characterized by free-range animal husband-
ry and disturbance of the drainage channel, 
and physical disaggregation of soil cover and 
clods contributes significantly to soil erosion 
vulnerability. Boardman et al. (2017) asserted 
that the current land degradation, which cul-
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minates in badlands and gullies, developed 
from the 200 years of history of overgrazing. 
Hebinck et al. (2018) noted that the Tyume 
basin has been subject to unguarded con-
tinuous communal grazing, which the cattle 
herders committee politically strengthened 
from 1847 to 2005. Hence, the bareness and 
topsoil disturbance rendering the hilly ter-
rain vulnerable to soil erosion is possibly due 
to the poorly coordinated farm practice and 
cropland abandonment (Sibiya et al., 2023). 
The study seeks advocacy for the remediation 
of sites already degraded by unguarded LU/C 
activities through afforestation policy, consid-
ering the negative response of degraded land 
to the natural hydrological process and the 
potential for soil erosion.

The soil erosion vulnerability findings strongly 
correspond to Mhangara et al.’s (2012) find-
ings on soil loss within the Tyume section 
of the Keiskamma catchment, based on the 
Sediment Assessment Tool for Effective Ero-
sion Control approach. This study agrees with 
Mhangara et al. (2012) deduction that vege-
tation enrichment is highly instrumental in 
soil erosion mitigation. However, Mhangara et 
al. (2012) produced a significant error matrix 
consistent with the conservation rating factor 
used. Therefore, this study shows that geol-
ogy information and terrain ruggedness in-
dex are better hybrids than the conservation 
rating factor used in Mhangara et al. (2012) 
approach, as the error matrix within the ex-
tremely rugged area was significantly reduced. 

Specifically, this study highlighted the prob-
lem of unsustainable land management in the 
Tyume Basin, which is not strictly driven by 
nature. Therefore, this study calls on the De-
partment of Environment, Forestry and Fish-
eries, Department of Water and Sanitation, 
and other concerned stakeholders to review 
the policy against human encroachment on 
the riparian lands and the mutilation of river 
channels.

5.	 Conclusions

An integrated framework of soil erosion as-
sessment based on clustering of geo-morphic 
parameters with land use/ land cover and ge-
ology theme has depicted the substantial role 
of morphometric parameters in the qualita-
tive assessment of soil erosion in areas with 
topographic complexities. The novelty of the 
work lies in the selection of GIS-based phys-
iographic themes in achieving a site-specific 
soil erosion modeling. The following inferenc-
es can be drawn from the study:

-	� The morphometric-based soil erosion 
model proved reliable in the absence of 
pluviometric and pedometric data.

-	� The model provides a qualitative infer-
ence of the hotspots and cold-spots of 
soil erosion vulnerability.

-	� The study highlights human encroach-
ment, terrain bareness, hillslope farming, 
and land abandonment as the cogent fac-
tors driving soil erosion in the terrain.

-	� Appositional evaluation of the fluvial net-
work orientation, the topographic posi-
tion index information, and the land use/
land cover deduction provides substantial 
information on the vulnerability of the ri-
parian environment in the southern sec-
tion of the Tyume.

Due to resource constraints, a significant lim-
itation in this study is the inability to embark 
on a field sampling for periodic rainfall data 
gathering and soil physicochemical proper-
ties to corroborate the findings with a spatial 
distribution map of rainfall erosivity and soil 
erodibility. However, this is recommended for 
future research, mainly to undertake a scenar-
io mapping of an improved revised universal 
soil loss equation with some of the validated 
morphometric parameters presented in this 
study. Overall, the present approach is suita-
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ble for qualitative soil erosion assessment in a 
topographically complex environment. 
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