Introduction.

Interest of the scientific community in marine sciences-related research has been growing for the 1999 and 2000. Many solutions to sea-related problems have been interesting in the context of marine biology and chemistry, big science areas like oceanology, aquaculture, fishery and ecology. A number of studies have been conducted in 1999, 2000. The Spanish aquaculture directory (ed. 1999) [1], the report from the Ministry of Education "Marine science research in Spain (1981-1998)" (ed. 1999) [2], the report from the Ministry of Agriculture "Evaluation of the activities of research and technological development in aquaculture on the (1982/1997)" (ed. 1999) [3], the "White book on Aquaculture in Spain" (ed. 1999) [4] outside of the follow-up surveys contrasting topics shown to be of concern to marine sciences in Spain. During the 1999 Congress of the spanish society for the history of science and technics, a study was presented on "The Cádiz laboratory of the spanish council for scientific research fisheries research institute, between 1957 and 1966, a research "arena"" [5].

Several congresses and conferences have been held in Spain. The spanish leadership in view of the european program Aquaflow, has been purposely added to this paper [6]. An additional bibliographical tool is, the latest report from the Iberoamerican Scientific and Technological Development Program (CYTED), relevant to aquaculture through its Subprogram II [7]. Also discussed here is the Coastwatch Europe network 1999 report recently produced by the government of Andalusia [8]. And this report is finalized with a discussion on the most widely recognised electronic journal and forum of marine science in Spain.

As the result of the follow-up survey for foregoing issues of the ASFA database between 1999 and 2000, 838 articles were identified as published in Spain. The bibliometric analysis of this publications has been found useful to enlighten the peculiarities of the spanish research system in this academic territory. It includes the communication channels used by the scientists, the authorship background and the unbalanced distribution of the research through out the country.

The intended goal of the marine sciences information activity report for Spain 1999/2000 is to fuse all the informative perspectives of the cited documentation into one overall mental map, wherein each source is by its common focus, the marine sciences.

1. **The Spanish aquaculture directory (ed. 1999).** *(spanish only)*

Produced by the Scientific Documentation and Information Center, Spanish Council for Scientific Research (CSIC, Madrid). Its last edition was published in 1999. The directory is divided into two sections: Research Centers and Firms.
The research centers section is expected to reveal those research institutions, founded by the government, the University; the Ministeries; the Regional and local authorities; the International organism working in Spain. Information available from each entry includes: address, phone, fax, e-mail; main person at charge; subjects and/or species focused; and the courses related with aquaculture.

The section dedicated to business is listed alphabetically and by subject. Each entry in the alphabetical list supplies the consultant with the name and acronym of the firm; the address, phone, and fax of the central headquarters; the person responsable name; the animals cultured, techniques employed and annual estimated production; the products marketed; the I&D activities developed. The subject-oriented lists firms under the headings: The Cultured Species Alphabetically Ordered; the pharmaceutical and chemical products elaborated; food for aquatic species; aquaculture equipment; engineering and instalation design; aquatic health, quality control and analytical chemistry; consultancy; life animals transport; reintroduction of populations; production and marketing of food; production and marketing of drugs; finance, assurance; contamination and environmental studies; association of producers.

Two printouts are available from the Spanish Aquaculture directory. 1°) A comprehensive list of the scientific names (and their common equivalences) of the species cultured alphabetically ordered, 2°)a list of the common names (and their latin equivalences).

The publication closes with six indexes. The indexes are listed under: 1) the regional center authority in charge; 2) the research centers listed alphabetically; 3) after the courses they teach; 4) Index by courses offered; 5) By researchers working at the centers; and 6) a final list of the business by regions. All the entries are indexed in the Directory by page number where the complete data is available.

107 research centers, 728 researchers, 179 business are the sources available for the future of marine science in Spain. A new directory, with updated data including many more resources, will be soon available from the Spanish Council for Scientific Research (CSIC) Publication Service.

The report from the Ministry of Education "The research in marine science in Spain (1981-1998)" was recently published (ed. 1999). The contributors to this report are among the most prolific spanish authors of the scientific literature, and among the unique publishing in the journal Nature, contributors were also from the delegation to the V EU Framework Program.

This government-sponsored report was edited reflecting the spanish effort to the EU IVth Framework Program, and the spanish national interests on EU Vth Framework Program related topics. It is also a result of the Spain's IIIrd National Plan of R&D, a Government effort for a rapid progress in Science & Industry.

Five crucial trends are surveyed.

The european funds related with the marine R&D. Spain (with Ireland) is ranked in 10th position, of the 14 EU countries regarding R&D fund available for marine science research. Also the analysis indicates that the spanish governmental financial effort related to R&D in marine sciences is considered to be 30 times inferior to all the sea-related spanish activities real impact on national economy.

The survey of the development of the National Program in R&D in Marine Science and Technology (P.N.CYTMAR). The analysis includes an estimation on the spanish population of scientists working on the marine sciences-related topics. It reflects the competitive effort of a small community. Some 135.600 euros founded the three spanish P.N.CYTMAR programs, between 1988 and 1997.
The examination of the Spanish partnership into the EU MAST III program, lists the shortage of scientific resources including scientists. The need to promote a greater number of research groups in Galicia, Murcia and the Basque Country. A better policy would need more viability projects and "market analysis". A reduction of the bureaucratic policy associated duties commiting with the Spanish leaders in R&D proposals, must be undertaken. The R&D inside the business sector must be more frequently added to the R&D Spanish national plan (only 10% of the Spanish MAST proposals were from the private sector). The expansion of the technical staff must be promoted. The design of a R&D National Plan in Marine Science and Technology is readily accepted. A conclusion data is offered, the Spanish rate of funding amounts to 1/3 of the total, facing 2/3 coming from Europe; the improvement of the Spanish implication is then counselled.

An examination of the Spanish scientific production in marine science and technology R&D, clearly states the leadership of the university. The Spanish council for scientific research's (CSIC) contribution were the most prolific in aquaculture and marine ecology. The oceanographic Spanish Institute (IEO) provided a wider information channel to the fisheries-oriented subjects. Between 1981 and 1995, 4604 documents were produced (75% journal articles, and 25% books and chapter of books). Only 1 out of 3 documents was published in Spanish, 65% of the total production was published in English. The data from researchers working in the Antartics is not reflected in 99/2000.

The Oceanography Research Cruiser "Hespérides". Launched in 1991, built with a budget of 54 M€uro, has two expeditions annually to the Spanish research mission in the Antartics. Between 1991 and 1998 the ship has been involved in 50 oceanographic campaigns, and 41 research projects have been accomplished. The users of this scientific resource have come mainly from Spanish Council for Scientific Research (CSIC) (52%), the University (27%); the Spanish Oceanographic Institute (11%); the Naval Forces staff (10%). The bibliographic production from the Antarctic campaigns amount to 53.7% of the total, and the articles on Mediterranean topics amount to 37.1% of the total, although the ship works there only a 14% of its operative time. Two web sites are designed for those interested in "Hespérides" are: http://www.cicyt.es/hesperides/ and http://www.ugbo.icm.csic.es.

3. The report from the Ministry of Agriculture "Evaluation of the activities of research and technological development in aquaculture into the 1982/1997 period" (ed. 1999). (Spanish only)

The report from the Ministry of Agriculture "Evaluation of the activities of research and technological development in aquaculture into the 1982/1997 period" extends the chapter on R&D in the "White Book on Aquaculture in Spain" [4].

has extended the , publishing in 1999. The authors come from the Social Advanced Studies Institute IESA (Spanish council for scientific research, Madrid), and from the Galician University-Firm Foundation (FEUGA). The period studied is 1982-1997. Two volumes are available: the first one with the evaluation, and the second with the directory of the publications of the Spanish researchers in aquaculture. The data has been edited with the cooperation of the financing institutions in aquaculture in Spain: Interministerial Commission for Science and Technology (CICYT), Center for the Industrial Technological Development (CDTI), General Secretary for the Maritime Fishery, Regional Authorities, European Union, and Spanish Oceanographic Institute.

Crucially important conclusions raised in the domain of information seem to be that:

the Regional Authorities spend so many funds into R&D in aquaculture that an in-depth revision of their whole policy is necessary, to adequate it to the real needs of industry in their territory;
Data bases from financial organisms must be uniform refined and even in some cases created. CICYT and CDTI databases seem to be able to be interpreted as the models;

The development of standards attracting economic-funding for researchers optimization of the experimental plants;

Sinergies for improving the degree of transfer and exploitation of research results must be put in work (17 national and 2 international recognised patents, have been produced in the period);

Permanent evaluation programmes of the activities performed inside the research centers must be conducted;

The bibliographic production is oriented to the production of personal resume (curriculum vitae). A reorientation of the recognition of the scientist-work towards the topics related with consultancy must be the factor;

The international ranking of the spanish bibliographical production in aquaculture is around 10th. But marine biology topics like: genetics, biochemistry and molecular pathology of marine organisms need to be promoted.

Because of their size and absence of technical staff the results from the researchers inside private firms is weak; especially, on innovation, firms by themselves, are only able to perform by themselves the work in 20% of the cases. The area's need in an 80% of collaboration (from the universities or other high research institutions).

The report was undertaken by the general secretary of maritime fisheries, and is available through the internet. Its main conclusions on R&D are published and analysed in the above commented report.

In the White Book we find an introduction to aquaculture and a structural analysis of this industry. The introduction uses historical criteria to present an initial view on the situation of the sector in Spain. The structural analysis affords the administrative and technological framework, environmental management, the markets of aquaculture, and a set of proposals for determining the immediate priorities.

The number of congresses and conferences in marine science for 1999/2000 in Spain, have been derived from RedIRIS (the Spanish academic internet network).

In 1999:
1999 Canigo Project Conference. The subjects of the conference were the marine systems of the Canary Islands-Azores-Gibraltar region. It was organised by the University of Las Palmas de Gran Canaria, and held between September 12-14, 1999, at Las Palmas de Gran Canaria. Its electronic address is: http://www.ccbb.ulpgc.es/canigofc.

In 2000:
The following list is a RedIRIS network printout of all the congresses and conferences offered in 2000 (http://tierra.rediris.es/marinet/marinet_english.html).

Workshop on spatial objective analysis for diagnostic studies in meteorology and oceanography. Menorca, 18-22 September 2000. Internet address: http://campanilla.uib.es/workshop

A development project supported by the european commission DG12 was presented by Miss Rosa Flos, an spanish council for scientific research officer, at the 98 MAST conference Lisbon (proceedings published in 1999), and the project is presently implemented. The research results from the EU funded projects are being transferred to the end users (SMEs) as technical leaflets, by internet and e-mail. 16 countries were initially involved, and the web content management brings together providers from the European Aquaculture Society (EAS), the Federation of European Aquaculture Producers and AquaTT.

7. The memo of the iberoamerican scientific and technological development program (CYTED). Subprogram II Aquaculture. (spanish only)

The Memo published in 2000 in spanish, illustrates through the subprogram II the thematic network in Iberoamerica on aquaculture activities. With a total budget of 130.869 SUS the subprogram has 18 (7.28%) spanish research groups. It is the third largest number of research groups by country (only surpassed by Mexico and Brasil).

Out of 7 research projects concluded in 1999, the two directed by spanish scientists, on *Artemia* and *Mussels* received the largest founding $35,000 and $40,000, respectively. The Artemia project resulted into 6 dissertation, 2 books, 25 papers and 6 invitations to congresses.
No outstanding results were achieved, but the scientific and technological information transfer is notable, together with the research groups promotion between the participants, and the possibilities related with the transference of the results obtained by the project to industrial areas of productivity.

The mussel project resulted in 1 dissertation thesis, 19 scientific papers, and 10 invitations to congresses. Its results are highly evaluated concerning the exchange of information and technical and methodological capabilities of the participant groups.

The CYTED Conference on Coordination of the Programs was held in Santiago de Compostela, Spain, 3-13 November 1999.

8. The andalusian government recently produced Coastwatch Europe network 1999 report. (spanish only)

This report shows the results of the campaign Coastwatch 99 (an initial design based in the European Commission General Directorate XI) in Andalusia. The data, obtained from 399 inspections performed in November 25, 1999, amounts to 24% of the andalusian coastal littoral. Granada is the best studied littoral (50%), and Huelva the least (13%).

Professors from the Faculty of Sea Sciences of the University of Cadiz, conducted the inquiry and analysis of data from the Coastwatch campaign 99.

Aquaculture is said to be the less environmentally risked activity (3.95%) for the andalusian coastal littoral. Dead worms (32.46%) and life marine birds (35.34%) were the animals more frequently detected in the coastline. Stational explosions of algae growth was detected in 26% of the occurrences. Wild areas, such as dunes, are dominant in Huelva (76%). Cádiz is the dirtiest coastline in Andalusia, Málaga has the cleanest beaches. Erosion was attributed as the greatest risk to the coastal areas (24%), and coastal construction as second (16%).

The spanish form used to record the data of this study is facilitated in an Appendix. Entries are presented by coastal zone studied and project observer; influences coming from in-land; the supralittoral zone; the mesolittoral zone; sweepings and pollution; and general observations (did the storms changed the coastline? etc.).

9. A final note on the most known electronic journal and forum.

The university of Zaragoza supports Spain's best known aquaculture electronic journal: http://aquatic.unizar.es. The journal is of value to those with interest in the area of spanish aquaculture. It is essential to reference the electronic journal for the sake of the aquaculture investigator.

The RedIRIS (the Spanish academic internet network) resource in marine sciences, the Marinet Forum(http://tierra.rediris.es/marinet/marinet_english.html), offers the best information for those concerned with events in the area. It is structured into these sections: International programs; Guides and directories; Oceanographic research centers (all iberoamerican countries, from Argentina to Venezuela); Research projects; Ships, harbours, and oceanographic campaigns; International organisms; Publications; Oceanographic data; Firms; Software; News; and Divulgation. A consistent long the way a consistent addressing scheme is employed to distribute the resources. The massive production of online contents can be reused and adapted to fit the requirements of all interested parties thanks to the use of metadata facilities.

The survey of ASFA 1 (Biological sciences & living resources), Cambridge Scientific Abstracts, detected 838 articles published in Spain, between 1999 and 2000. It is pertinent to make use of this kind of data, if not to answer the questions, then at least to forecast the difficulties with communication channels used by scientists, and the methodology of cataloging the authorship behaviour and the unequal distribution of the research effort within Spain.

This section investigates a panorama of the difficulties making use of bibliometric methods in assessment, during the period of study [16].

10.1. Relation of quantities of keywords assigned to journal articles to the number of authors. [17]

Introduction.

The importance of the informative nature of an item inside a database could be detected by reporting the number of keywords used to index it. The assumption would be that to warrant the informativeness of a series of keywords is to assure that they fit more closely their functions. Are they the quantity of keywords and the quantity of authors related or not? The present report tried to evaluate the hypothesis erected according to which an article with a great number of authors do also contain a great number of keywords.

Material & Methods.

One permanent standard bibliographic printout, such as is found on ASFA computerized information systems, can be taken directly in order to screen the two bibliometric traits (authors, and keywords) required to test the hypothesis. The data readily fell into an opposing pair for the bibliometric categories: authors vs. keywords.

The complete collection of 838 papers, published from 1999 through 2000, present in the Cambridge Scientific Abstracts database ASFA, was examined. Total duration of follow-up was defined as the interval between the last Aberdeen Euraslic Conference (1999) and most recent material available from the utility at the campus in Puerto Real.

Results.

As can be seen in attachment Fig. 1&2, the curve for which meaningful results can be observed did differ greatly from that expected. Thus, a remote relationship has been identified between the number of keywords employed to index an item and the number of its authors. Ultimately, some massively authored articles (17 authors) have demonstrated a single actuarial relevance after the number of keywords used (33 keywords). But the fact is fortuitous. Rather, the most common outcome is that it does not demonstrate the hypothesis.

Approximately 86% of the authors vs. keywords relations detected have been depicted between the cumulative incidences estimated between 1 and 5 authors (attachment Figure 1). As far as the number of keywords employed is concerned, they present a mean of 12 words (attachment Figure 2). This situation must be added to a concentration of 90% of the articles between 1 and 20 keywords.

Discussion.

The information available on the significance of the database keywords and their relationship with the number of authors present an effective link. But at the time of diagnosis the incidence of the hypothesis tested seems to be inconsistent.
The curve (see attachment in Figures 1& 2) presents a peak at site of 3 authors vs 12 keywords. It becomes apparent that the hypothesis as such is unsound. But if our goal is to identify and treat with separate simetries between these two bibliometric traits, some ideas on spanish optimal size limited to authorship and indexing practices are attainable. Without risk 3 authors is the best size for a spanish unit of information production, and the 3-authors papers amounts to 25% of the total. At the same time the total amount of keywords assigned by paper break down peak at 7 keywords, it represents 10% of the complete set of publication analysed.

The uneveness of the distribution of authors vs. keywords is striking. Deviating from the hypothesis, the current status of information production in Spain on fishery and aquatic science presents patterns of absence of international funded research, assumed to correlate with multiple authorship [18]. A model of team cooperativeness associated with such scarce behaviour of authorship is not available in Spain, and for this discipline. It is known that when research contribution is authored by two persons, the first is credited with 75% of the total work [19].

The main finding of this study is that, if observed, the behaviour of collaboration eventually shows to harbor a reduced quantity of keywords, determining the qualitative measure linked to the indexing practice with multiple authorship. The assignment of author rank is a question not yet posed. In conclusion, no conjecture can be drawn, further study is required on the relationship associated with forecasting practices looking at novelty and international multiple authorship practices.

10.2. Distribution of scientific creativity among separate cities of Spain.

The next step of our investigation considered data at our disposal from ASFA to raise questions on scientific creativity in cities in Spain.

In comparing the data on the distribution of the scientific creativity of the different cities. The contribution by each of these cities to the volume of scientific data available in Spain, permits the examination of the way its scientific potential is distributed through its main cities. It is possible to point out those cities where it could be assumed that a considerable volume of the scientific search performed available would be different from that published through open publication. [9]

Material & Methods

The database compiled after the ASFA resource, contains a field Notes ("nt"), where the scientists addresses can be found. The software this author employed was unable to produce a list of addresses. The research scientist addresses have been found one by one manually.

The data was processed as follows. The total number of contributions were determined by each city. Then the cities were ranked according to the number of contributions. To conduct a thorough comparative analysis of the availability of informational products in the scientific centers of Spain the choice was made to distribute the data looking after the kind of organisational identity of the authorship. Then the observed data were distributed identifying sense of the place where the scientific work was performed. Universities, the spanish council for scientific research, and the spanish institute of oceanography were initially researched.

Results

Let us consider the results shown in Table 1. First, it seems noteworthy that 60% of the data observed was from the universities, 25% was the spanish council for scientific research (CSIC), and 6% for the spanish institute of oceanography.
It is interesting that Barcelona is the largest scientific city in the marine science with 16.5% of the data surveyed. At approximately the same level are Vigo (9.3%) and Madrid (10.7%). The andalusian cities are far behind (Almeria 1.1%, Granada 1.8%, Málaga 3.3%, Cádiz 4.2%, Huelva 0.1%, Sevilla 4%).

In other words, the variety of scientific cities can be divided into separate subgroups. At first the number of contributions decreases quite rapidly; then there appears a small group at approximately the same level, and finally we again face a rapid decrease.

Discussion

The validity of the results obtained must be discussed. The mechanism controlling the decrease in the number of contributions can be seen by the analogy of an acute struggle for existence as a result of nutrient supply. When we analyze the way different scientific centers affords with total amounts of contributions assigned by city, the data presents the view of science as a hierarchical self-organizing system. According to it, a model of information distribution is replicated in all the cities where the scientific centers exist. With the exception of Vigo where a slight optimability of the results from the Spanish council for scientific research (csic), over those from the university, formalize to a certain degree a slow model of convergence to the general panorama.

Scientists work under unequal conditions as far as information is concerned [10]. What this means is that different degrees of available information will have essentially different scientific potentials. The stocking of the libraries with scientific journals, the distribution of foreign scientific journals among separate scientific centers, and the distribution of *Science Citation Index* inside Spain are manifestations of unevenness. It can also be seen, from the bibliometric point of view, the poor amount of contributions at the tail of the distribution, observed in Table 1, nevertheless it presents a constant quotient value between successive decreasing quantities. An intrinsic quality suggesting its adequacy for comparison [11].

10.3. Centers ranked by number of papers of authors and journals.

The underlying section is a result of the number of authors of Spanish publications inside the ASFA database and the number of journals where these items have been published. As the multiple authorship problem requires the distinction between authors and collaborators, and the disadvantages of the counting method employed are closely attached to the ranking produced. To keep the same type of frequency function for different weight assignment methods implies that a Lotka-type frequency function must be fitted by the data. To predict the author's productivity strata, and to further discuss on stratification of marine science in Spain, the priority is to confirm that the choice of author counting confirm a Lotka-type law. An analysis on the journal's productivity is also carried out.

A list of the indispensable first 10 essential journals where Spanish authors are published is offered.

Material & Methods

The data for the study has been derived from the comprehensive 1999-00 Spanish-authored bibliography. Compiled by the author from the ASFA database. The total number of authors covered in the entire bibliography are 2022 who have published into 264 journals. We have explored whether Lotka’s law should fit in the data of authors. We have identified the most representative authors and journals suggested by the literature [12].

Results
Lotka's law states that the number of authors which contribute one paper will constitute the largest group, around 60% of the total authors. In this study, this group of authors constitutes 75% of the total authors, and with authors of 2 to 6 papers, equals to 99.1% of all authors as shown in Table 2a. A list of authors contributing seven or more articles has been elaborated, and is discussed below.

We computed the distribution of the data arising from the number of journals and the number of articles (see Table 2b). 838 articles on marine sciences papers publishing in serials during the years 1999-2000. Disseminated in 264 journals. 50% of these articles were found in 37 journals. The most preferred journal published a total of 38 papers.

Discussion

The phenomenon observed in this study is of stratification in marine sciences in Spain. This points out to an extreme concentration of authorship and a decisive dispersion of the sources utilized.

At the time of diagnosis, 1999-00, the applicability of Lotka's law is not viable, although one paper authors are the majority, and the two paper authors are less than the one paper authors but more than the three paper authors. The latter result, with its dimension of strong interdisciplinarity implied, in that there are many more collaborators than authors (surpassing the forecastings of the Lotka's law). A significant association recommending further analysis of productivity strata in marine sciences in Spain. The most dynamic authors, for the period 1999-2000, were Mr. Duarte (CSIC, Palma de Mallorca, 14 contributions), Ms. Zanuy (CSIC, Castellón, 11 contributions), Mr. Carrillo (CSIC, Castellón, 10 contributions), Mr. Delgado de Molina (IEO, Tenerife, 10 contributions), and Mr. Freire (University, La Coruña, 9 contributions).

The problems of merging editorial traditions are reflected in the analysis concerning domestic and international journals used by researchers. Scientists preferred to publish much of their works in serials publications of other countries. Although the main spanish journal "Scientia marina" is ranked as fourth among scientific journals, only 5% of the articles were published in domestic journals. Characteristics of the publishing infrastructure of peripheral countries is verified also in this case. In fact, most contributors choice journals like: Marine Ecology Progress Series (29 papers), Journal of the Marine Biological Association of the United Kingdom (23), Archiv für Hydrobiologie (22), Scientia Marina (CSIC, Barcelona) (19), and Aquaculture (17). Between the less information source available for spanish scientists is, interestingly enough, Marine chemistry (2 only admitted manuscripts).

The spanish journals included in the database were: Archivos de Zootecnia (Córdoba, 1 time), Boletín Real Sociedad Española de Historia Natural (Bulletin of the Spanish Royal Society for the Natural History) (Section biology, 7 times, Section geology 1 time), Iberus (Oviedo, 3 times), Technical Reports from the Canary Institute for Marine Sciences (ICCM) (1 time), Miscellania Zoologica (Barcelona, 2 times), Scientia Marina (CSIC, Barcelona) (19 times), Thalassas (University, Vigo) (2 times).

10.4. Data on documentary tipology and main research problems confronted after an analysis of key words employed in database records.

To estimate the short-term association between technical reports/conference communications and information reported through contributions to primary literature (journals), the quantities of each documentary typology available was obtained.

Conclusions derived from the above analysis resulted in very, few books (0.5% of the 838 total) available through the database. No technical report was admitted if not assimilable to a journal article. The only available report was from the Canarian Institute of Marine Sciences. The assumed value of the conference
presentations and technical reports production was not able to be tested [14]. The complete documentary
typology of the spanish bibliographic production is available after Table 3.

Some research questions are only able to be retrieved by using the keywords [15] it can be accepted that
those shown in Table 4 are substantial. Taxonomy (68), animal morphology (59), Biomass (53), Community
composition (49), Feeding behavior (42), Fish culture (49) and Phytoplankton (42) present a better
performance in estimating the maximum expected number of papers retrievable through keywords.

The effort of spanish labs as seen through the ASFA database recovery priorities is in conformity with world
standards of community compositions (see Table 4). Two spanish papers concerning Phytoplankton were
published in the journal Nature during the period 99/00. As in the average of the ASFA database Community
composition is a result of a certain degree of relative effort of the spanish labs; the aims Fish culture,
Taxonomy (two bioinformatics devices from Spain, related with the taxonomy of fishes and algae have been
accepted by CODATA (ICSU) [20],[21], in 99/00) and Biomass are also a priority for all the countries.
Spain's concern with Animal morphology, because of its geographical position, is not shared by people
working abroad. Works dealing with Fish behaviour play a major role in Spain, a concentration which is not
observed in the other countries.

The scarce number of information activity determined on immunogenicity (12 (1.43%) out of 838
contributions), histology (10 (1.19%) out of 838 contributions connected with this keyword) and vaccines
(1 (0.1%) out of 838 contributions) correspond to the global rank for the ASFA database 0.13%, 0.84%,
0.19% respectively. No information activity is available on Endocrinology; Eggs are only a research subject
for 1.19%, contrasting with the world data on 3.32% articles.

As far as animals studied, the more prominent were: the Acipenser (10 papers), Brown trout (13), the
Dicentrarchus labrax (22), the Gilthead seabream (67), Mytilus galloprovincialis (14), Oncorhyncus mykiss
(16), Rainbow trout (13), Salmo salar (10), Salmo trutta 18), Scophthalmus maximus (13), Sea bass (22),
Tuna (19) and Turbot (32).

11. Final note.

Documenting the state of the art information activity in the marine sciences of Spain 99/00, the best
bibliographic resources have been compiled in evaluating books and in attempting to study research papers.

The electronic pursuit has given a portrait of research information available within Spain. From the least
available electronic information on such subjects as vaccines to a flood of information on subjects as
spanish antartic research, the report is expected to provide an insight into spanish 99/00 marine sciences-
relevant activities.

*

The author heartily thanks the staff at the science & technology library of the university of Cádiz for their
cooperation in finding data. Hector Herrera is specially acknowledged for minimizing the risk of english
errors.

References

aquaculture directory" (ed. 1999)).
84-00-07963-9. ("The research in marine science in Spain (1981-1998)" (ed. 1999)).

[14]. Dizon, L.B.; Sadorra, M.S.M.Patterns of publication by the staff of an international fisheries research center. Scientometrics, 32(1), 1995 January, 67-75.

